scholarly journals First-principles mode-by-mode analysis for electron-phonon scattering channels and mean free path spectra in GaAs

2017 ◽  
Vol 95 (7) ◽  
Author(s):  
Te-Huan Liu ◽  
Jiawei Zhou ◽  
Bolin Liao ◽  
David J. Singh ◽  
Gang Chen
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Junsoo Park ◽  
Maxwell Dylla ◽  
Yi Xia ◽  
Max Wood ◽  
G. Jeffrey Snyder ◽  
...  

AbstractBand convergence is considered a clear benefit to thermoelectric performance because it increases the charge carrier concentration for a given Fermi level, which typically enhances charge conductivity while preserving the Seebeck coefficient. However, this advantage hinges on the assumption that interband scattering of carriers is weak or insignificant. With first-principles treatment of electron-phonon scattering in the CaMg2Sb2-CaZn2Sb2 Zintl system and full Heusler Sr2SbAu, we demonstrate that the benefit of band convergence can be intrinsically negated by interband scattering depending on the manner in which bands converge. In the Zintl alloy, band convergence does not improve weighted mobility or the density-of-states effective mass. We trace the underlying reason to the fact that the bands converge at a one k-point, which induces strong interband scattering of both the deformation-potential and the polar-optical kinds. The case contrasts with band convergence at distant k-points (as in the full Heusler), which better preserves the single-band scattering behavior thereby successfully leading to improved performance. Therefore, we suggest that band convergence as thermoelectric design principle is best suited to cases in which it occurs at distant k-points.


2020 ◽  
Vol 102 (11) ◽  
Author(s):  
Ransell D'Souza ◽  
Jiang Cao ◽  
José D. Querales-Flores ◽  
Stephen Fahy ◽  
Ivana Savić

2011 ◽  
Vol 284-286 ◽  
pp. 871-874
Author(s):  
Zan Wang ◽  
Lei Quan ◽  
Yi Wu Ruan

A Monte Carlo method is employed to investigate the properties of electron transport with considerations of electron-phonon scattering including intervalley scattering and intravalley scattering. Under different electric fields, the coupling relations between electrons and phonons are studied, and the behaviors of absorbing and releasing phonons from electrons are also analyzed. The results show the scattering events of absorbing phonons from electrons decrease with the increasing simulation time. At the same temperature, the mean free path of electron increases initially and then decreases with the increasing electric field intensity, and finally approaches an asymptotic value.


2020 ◽  
Vol 22 (7) ◽  
pp. 4010-4014
Author(s):  
Xiangtian Bu ◽  
Shudong Wang

Through first-principles simulations combined with the Wannier function interpolation method, the hot carrier scattering rates of D-carbon are studied.


RSC Advances ◽  
2020 ◽  
Vol 10 (41) ◽  
pp. 24515-24520 ◽  
Author(s):  
Xiangtian Bu ◽  
Shudong Wang

Through first-principles calculations combining many-body perturbation theory, we investigate electron–phonon scattering and optical properties including the excitonic effects of T-carbon.


2014 ◽  
Vol 17 (N/A) ◽  
pp. 333-383 ◽  
Author(s):  
Jelena Sjakste ◽  
Iurii Timrov ◽  
Paola Gava ◽  
Natalio Mingo ◽  
Nathalie Vast

Sign in / Sign up

Export Citation Format

Share Document