charge carrier concentration
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 49)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Panupong JAIBAN ◽  
Pimpilai WANNASUT ◽  
Anucha WATCHARAPASORN

Abstract In this work, the influences of Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) addition on phase, microstructure, and thermoelectric properties of Ca3Co4O9 (CCO) were investigated. (1-x)CCO-(x)BCZT ceramics where x = 0, 0.003, 0.005, and 0.010 were fabricated successfully via a conventional solid-state sintering at 1,223 K for 24 hrs. The substitution of BCZT introduced the chemical defects (V''Co, V'''Co, V''Ca) in CCO ceramic, which increased charge carrier concentration and enhanced the electrical conductivity. The presence of Co3+ improved the Seebeck coefficients of CCO ceramic. The thermal conductivity of CCO ceramic decreased when BCZT was added. The addition of BCZT at x = 0.010 promoted the highest thermoelectric power factor (PF~235 mW/mK2), and the highest figure of merit (ZT~0.5) at 800 K, which present this ceramic an alternative p-type oxide thermoelectric for a high-temperature thermoelectric device.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wei Yang Samuel Lim ◽  
Danwei Zhang ◽  
Solco Samantha Faye Duran ◽  
Xian Yi Tan ◽  
Chee Kiang Ivan Tan ◽  
...  

Thermoelectrics convert heat to electricity and vice versa. They are of technological importance in cooling and energy harvesting. Their performances are defined by figure of merit, zT. Decades of studies have largely focused on the development of novel and advanced materials reaching higher performance in devices. To date, the lack of sufficiently high-performance thermoelectrics, especially among Earth-abundant and lightweight materials, is one of the reasons why there is no broad commercial application of thermoelectric devices yet. This challenge is due to the complex correlations of parameters that make up the zT. Theoretical estimation can reveal the optimal charge carrier concentration, which can provide a good idea of doping compositions. Depending on the material characteristics, decoupling these intercorrelated parameters could be viable. Broadly speaking, increasing carrier mobility, inducing a large fluctuation in density of states (DOS) at the Fermi level, and lowering the lattice thermal conductivity lead to better thermoelectric performance. In this mini review, we provide a broad picture of electronic property optimization for thermoelectric materials. This work will be a useful guide to quickly take readers to the forefront of thermoelectric research.


Author(s):  
Valentin Garbe ◽  
Alexander Schmid ◽  
Sarah Seidel ◽  
Barbara Abendroth ◽  
Hartmut Stöcker ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Monica A. Gordillo ◽  
Paola A. Benavides ◽  
Kaybriana Spalding ◽  
Sourav Saha

A new electrically conducting 3D metal-organic framework (MOF) with a unique architecture was synthesized using 1,2,4,5-tetrakis-(4-carboxyphenyl)benzene (TCPB) a redox-active cis-dipyridyl-tetrathiafulvalene (Z-DPTTF) ligand. While TCPB formed Zn2(COO)4 secondary building units (SBUs), instead of connecting the Zn2-paddlewheel SBUs located in different planes and forming a traditional pillared paddlewheel MOF, the U-shaped Z-DPTTF ligands bridged the neighboring SBUs formed by the same TCPB ligand like a sine-curve along the b axis that created a new sine-MOF architecture. The pristine sine-MOF displayed an intrinsic electrical conductivity of 1 × 10−8 S/m, which surged to 5 × 10−7 S/m after I2 doping due to partial oxidation of electron rich Z-DPTTF ligands that raised the charge-carrier concentration inside the framework. However, the conductivities of the pristine and I2-treated sine-MOFs were modest possibly because of large spatial distances between the ligands that prevented π-donor/acceptor charge-transfer interactions needed for effective through-space charge movement in 3D MOFs that lack through coordination-bond charge transport pathways.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xinwen Yan ◽  
Miao Xiong ◽  
Xin-Yu Deng ◽  
Kai-Kai Liu ◽  
Jia-Tong Li ◽  
...  

AbstractDoping has been widely used to control the charge carrier concentration in organic semiconductors. However, in conjugated polymers, n-doping is often limited by the tradeoff between doping efficiency and charge carrier mobilities, since dopants often randomly distribute within polymers, leading to significant structural and energetic disorder. Here, we screen a large number of polymer building block combinations and explore the possibility of designing n-type conjugated polymers with good tolerance to dopant-induced disorder. We show that a carefully designed conjugated polymer with a single dominant planar backbone conformation, high torsional barrier at each dihedral angle, and zigzag backbone curvature is highly dopable and can tolerate dopant-induced disorder. With these features, the designed diketopyrrolopyrrole (DPP)-based polymer can be efficiently n-doped and exhibit high n-type electrical conductivities over 120 S cm−1, much higher than the reference polymers with similar chemical structures. This work provides a polymer design concept for highly dopable and highly conductive polymeric semiconductors.


2021 ◽  
Author(s):  
MUNINDRA MUNINDRA ◽  
DEVA NAND

Abstract A simple, compact, and fundamental physics-based quasi-analytic model for Single layer graphene field effect transistors (GFETs) with large area graphene is presented in which the quantum mechanical density gradient method is utilised. The basic device physics of the two-dimensional (2D) graphene channel is studied analytically. This modeling leads to the precise drain current calculation of the GFETs. The drain current calculation for GFETs starts from charge carrier concentration, its density of states and quantum capacitance(QC). QC depends on the channel voltage as a function of gate to source voltage Vgs and drain to source voltage Vds primarily. The formulation of the drain current with velocity saturation has been done by the Monte Carlo simulation method. The performance of the analytical GFETs model is present the precise values of QC, its impact on drain current and transfer as well as output characteristics. The impact of QC at nanometer technology adds the nonlinearity to characteristics curves. The proposed method provides better results as compared with the previous analytical and simulated results.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Junsoo Park ◽  
Maxwell Dylla ◽  
Yi Xia ◽  
Max Wood ◽  
G. Jeffrey Snyder ◽  
...  

AbstractBand convergence is considered a clear benefit to thermoelectric performance because it increases the charge carrier concentration for a given Fermi level, which typically enhances charge conductivity while preserving the Seebeck coefficient. However, this advantage hinges on the assumption that interband scattering of carriers is weak or insignificant. With first-principles treatment of electron-phonon scattering in the CaMg2Sb2-CaZn2Sb2 Zintl system and full Heusler Sr2SbAu, we demonstrate that the benefit of band convergence can be intrinsically negated by interband scattering depending on the manner in which bands converge. In the Zintl alloy, band convergence does not improve weighted mobility or the density-of-states effective mass. We trace the underlying reason to the fact that the bands converge at a one k-point, which induces strong interband scattering of both the deformation-potential and the polar-optical kinds. The case contrasts with band convergence at distant k-points (as in the full Heusler), which better preserves the single-band scattering behavior thereby successfully leading to improved performance. Therefore, we suggest that band convergence as thermoelectric design principle is best suited to cases in which it occurs at distant k-points.


2021 ◽  
Author(s):  
Alex Burnstine-Townley ◽  
Somen Mondal ◽  
Yuval Agam ◽  
Ramesh Nandi ◽  
Nadav Amdursky

Light is a convenient source of energy and the heart of light-harvesting natural systems and devices. Here, we show light-modulation of both the chemical nature and ionic charge carrier concentration within a protein-based biopolymer that was covalently functionalized with photoacids or photobases. Using steady-state and time-resolved fluorescence, we explore the capability of the biopolymer-tethered photoacids and photobases to undergo excited-state proton transfer and capture (ESPT and ESPC), respectively. Various electrical measurements show that both the photoacid- and photobase-functionalized biopolymers exhibit an impressive increase in ionic conductivity upon light irradiation, which can be modulated by the light intensity. Whereas ESPT-induced cationic protons are the charge carriers for the photoacid-functionalized biopolymer, ESPC-induced water-derived anionic hydroxides are the suggested charge carriers for the photobase-functionalized biopolymer. Our work introduces a versatile toolbox to light?modulate charge carriers in polymers and taking together the attractive environmental nature of our new light-modulated ionic-conductive biopolymers, they can be considered for various photoelectrochemical applications. <br>


2021 ◽  
Author(s):  
Alex Burnstine-Townley ◽  
Somen Mondal ◽  
Yuval Agam ◽  
Ramesh Nandi ◽  
Nadav Amdursky

Light is a convenient source of energy and the heart of light-harvesting natural systems and devices. Here, we show light-modulation of both the chemical nature and ionic charge carrier concentration within a protein-based biopolymer that was covalently functionalized with photoacids or photobases. Using steady-state and time-resolved fluorescence, we explore the capability of the biopolymer-tethered photoacids and photobases to undergo excited-state proton transfer and capture (ESPT and ESPC), respectively. Various electrical measurements show that both the photoacid- and photobase-functionalized biopolymers exhibit an impressive increase in ionic conductivity upon light irradiation, which can be modulated by the light intensity. Whereas ESPT-induced cationic protons are the charge carriers for the photoacid-functionalized biopolymer, ESPC-induced water-derived anionic hydroxides are the suggested charge carriers for the photobase-functionalized biopolymer. Our work introduces a versatile toolbox to light?modulate charge carriers in polymers and taking together the attractive environmental nature of our new light-modulated ionic-conductive biopolymers, they can be considered for various photoelectrochemical applications. <br>


Sign in / Sign up

Export Citation Format

Share Document