scholarly journals Metamorphosis of Andreev bound states into Majorana bound states in pristine nanowires

2018 ◽  
Vol 98 (14) ◽  
Author(s):  
Yingyi Huang ◽  
Haining Pan ◽  
Chun-Xiao Liu ◽  
Jay D. Sau ◽  
Tudor D. Stanescu ◽  
...  
Author(s):  
Pasquale Marra ◽  
Angela Nigro

Abstract Majorana bound states (MBS) and Andreev bound states (ABS) in realistic Majorana nanowires setups have similar experimental signatures which make them hard to distinguishing one from the other. Here, we characterize the continuous Majorana/Andreev crossover interpolating between fully-separated, partially-separated, and fully-overlapping Majorana modes, in terms of global and local topological invariants, fermion parity, quasiparticle densities, Majorana pseudospin and spin polarizations, density overlaps and transition probabilities between opposite Majorana components. We found that in inhomogeneous wires, the transition between fully-overlapping trivial ABS and nontrivial MBS does not necessarily mandate the closing of the bulk gap of quasiparticle excitations, but a simple parity crossing of partially-separated Majorana modes (ps-MM) from trivial to nontrivial regimes. We demonstrate that fully-separated and fully-overlapping Majorana modes correspond to the two limiting cases at the opposite sides of a continuous crossover: the only distinction between the two can be obtained by estimating the degree of separations of the Majorana components. This result does not contradict the bulk-edge correspondence: Indeed, the field inhomogeneities driving the Majorana/Andreev crossover have a length scale comparable with the nanowire length, and therefore correspond to a nonlocal perturbation which breaks the topological protection of the MBS.


2018 ◽  
Vol 9 ◽  
pp. 1527-1535
Author(s):  
Jun-Hui Zheng ◽  
Dao-Xin Yao ◽  
Zhi Wang

Background: A Majorana bound state is a superconducting quasiparticle that is the superposition of particle and hole with equal amplitude. We propose a verification of this amplitude equality by analyzing the spatial Rabi oscillations of the quantum states of a quantum dot that is tunneling-coupled to the Majorana bound states. Results: We find two resonant Rabi driving energies that correspond to the energy splitting due to the coupling of two spatially separated Majorana bound states. The resulting Rabi oscillating frequencies from these two different resonant driving energies are identical for the Majorana bound states, while different for ordinary Andreev bound states. We further study a double-quantum-dot setup and find a nonlocal quantum correlation between them that is mediated by two Majorana bound states. This nonlocal correlation has the signature of additional resonant driving energies. Conclusion: Our method can be used to distinguish between Majorana bound states and Andreev bound states. It also gives a precise measurement of the energy splitting between two Majorana bound states.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. S. Ricco ◽  
J. E. Sanches ◽  
Y. Marques ◽  
M. de Souza ◽  
M. S. Figueira ◽  
...  

AbstractWe consider transport properties of a hybrid device composed by a quantum dot placed between normal and superconducting reservoirs, and coupled to a Majorana nanowire: a topological superconducting segment hosting Majorana bound states (MBSs) at the opposite ends. It is demonstrated that if highly nonlocal and nonoverlapping MBSs are formed in the system, the zero-bias Andreev conductance through the dot exhibits characteristic isoconductance profiles with the shape depending on the spin asymmetry of the coupling between the dot and the topological superconductor. Otherwise, for overlapping MBSs with less degree of nonlocality, the conductance is insensitive to the spin polarization and the isoconductance signatures disappear. This allows to propose an alternative experimental protocol for probing the nonlocality of the MBSs in Majorana nanowires.


2003 ◽  
Vol 387 (1-2) ◽  
pp. 7-12 ◽  
Author(s):  
M. Krawiec ◽  
B.L. Györffy ◽  
J.F. Annett

Sign in / Sign up

Export Citation Format

Share Document