majorana modes
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 49)

H-INDEX

19
(FIVE YEARS 7)

2022 ◽  
Vol 105 (2) ◽  
Author(s):  
Jian-Song Hong ◽  
Ting-Fung Jeffrey Poon ◽  
Long Zhang ◽  
Xiong-Jun Liu

Author(s):  
MengYao Li ◽  
Qingyun Yu ◽  
Jingguo Hu ◽  
TingMin Liu ◽  
Yong Chun Tao ◽  
...  

Abstract Recently, theory and experiment both have confirmed a Majorana zero mode to induce selective equal spin Andreev reflection (SESAR). Herein, we theoretically present controllable chiral Majorana modes (CMMs) by noncollinear magnetic configuration in a Josephson junction on a topological insulator with two ferromagnetic insulators (FIs) sandwiched in between two superconductors (SCs). It is shown that an additional phase shift is induced by the different chirality of the CMMs at the two FI/SC interfaces, whose magnitude is determined by misorientational angle θ, which can be administrated by the Andreev bound surface energies. The angle θ is found to result in the 0-π state transition and Φ0 supercurrent. Particularly, due to the SESAR, the coexistence of fully spin-polarized spin-singlet and -triplet correlations is exhibited with the exclusive fully spin-polarized spin-triplet (singlet) correlation corresponding to the ferromagnetic (F) [antiferromagnetic (AF)] configuration. For the two magnetizations only along y-axis, there exist no additional phase shift and topological supercurrent with fully spin-polarized correlations, especially, the supercurrent in the AF configuration is a lot larger than that in the F one, which is strongly dependent on the exchange field strength and FI length, thus even leading to 100% supercurrent magnetoresistance. The results can be employed to not only identify the topological SCs but also design a perfect topological supercurrent spin valve device.


Author(s):  
Pasquale Marra ◽  
Angela Nigro

Abstract Majorana bound states (MBS) and Andreev bound states (ABS) in realistic Majorana nanowires setups have similar experimental signatures which make them hard to distinguishing one from the other. Here, we characterize the continuous Majorana/Andreev crossover interpolating between fully-separated, partially-separated, and fully-overlapping Majorana modes, in terms of global and local topological invariants, fermion parity, quasiparticle densities, Majorana pseudospin and spin polarizations, density overlaps and transition probabilities between opposite Majorana components. We found that in inhomogeneous wires, the transition between fully-overlapping trivial ABS and nontrivial MBS does not necessarily mandate the closing of the bulk gap of quasiparticle excitations, but a simple parity crossing of partially-separated Majorana modes (ps-MM) from trivial to nontrivial regimes. We demonstrate that fully-separated and fully-overlapping Majorana modes correspond to the two limiting cases at the opposite sides of a continuous crossover: the only distinction between the two can be obtained by estimating the degree of separations of the Majorana components. This result does not contradict the bulk-edge correspondence: Indeed, the field inhomogeneities driving the Majorana/Andreev crossover have a length scale comparable with the nanowire length, and therefore correspond to a nonlocal perturbation which breaks the topological protection of the MBS.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
L. C. Contamin ◽  
M. R. Delbecq ◽  
B. Douçot ◽  
A. Cottet ◽  
T. Kontos

AbstractTopological excitations, such as Majorana zero modes, are a promising route for encoding quantum information. Topologically protected gates of Majorana qubits, based on their braiding, will require some form of network. Here, we propose to build such a network by entangling Majorana matter with light in a microwave cavity QED set-up. Our scheme exploits a light-induced interaction which is universal to all the Majorana nanoscale circuit platforms. This effect stems from a parametric drive of the light-matter coupling in a one-dimensional chain of physical Majorana modes. Our set-up enables all the basic operations needed in a Majorana quantum computing platform such as fusing, braiding, the crucial T-gate, the read-out, and importantly, the stabilization or correction of the physical Majorana modes.


2021 ◽  
Vol 104 (20) ◽  
Author(s):  
Alexander G. Bauer ◽  
Benedikt Scharf ◽  
Laurens W. Molenkamp ◽  
Ewelina M. Hankiewicz ◽  
Björn Sothmann

2021 ◽  
Author(s):  
Huan-Yu Wang ◽  
Wu-Ming Liu

Abstract Topological nontrivial systems feature isolated gapless edge modes, and play a key role in advancing our understanding of quantum matter. A most profound way to characterize edge modes above is through bulk topological invariants, which is known as bulk boundary correspondence. Recent studies on non-Hermitian physics have pronounced the broken bulk-boundary correspondence with the presence of skin effect. Here, we propose a new type of fermionic topological edge modes η, satisfying η+= iη,η2=-i. Remarkably, we demonstrate that for both two cases: superconductive chain with purely η modes and quantum chain with η, Majorana modes γ on different ends, fermion parity can be well defined. Interestingly, for the latter case, broken bulk boundary correspondence is observed despite the absence of skin effects . The phenomenon above is unique to open quantum systems. For the junction with both η,γ modes, the current will not remain sinusoid form but decay exponentially. The exchange of η modes obeys the rules of non-abelian statistics, and can find its applications in topological quantum computing.


2021 ◽  
pp. 35-60
Author(s):  
Xianxin Wu ◽  
Rui-Xing Zhang ◽  
Gang Xu ◽  
Jiangping Hu ◽  
Chao-Xing Liu

Science ◽  
2021 ◽  
Vol 373 (6550) ◽  
pp. 82-88
Author(s):  
Marco Valentini ◽  
Fernando Peñaranda ◽  
Andrea Hofmann ◽  
Matthias Brauns ◽  
Robert Hauschild ◽  
...  

A semiconducting nanowire fully wrapped by a superconducting shell has been proposed as a platform for obtaining Majorana modes at small magnetic fields. In this study, we demonstrate that the appearance of subgap states in such structures is actually governed by the junction region in tunneling spectroscopy measurements and not the full-shell nanowire itself. Short tunneling regions never show subgap states, whereas longer junctions always do. This can be understood in terms of quantum dots forming in the junction and hosting Andreev levels in the Yu-Shiba-Rusinov regime. The intricate magnetic field dependence of the Andreev levels, through both the Zeeman and Little-Parks effects, may result in robust zero-bias peaks—features that could be easily misinterpreted as originating from Majorana zero modes but are unrelated to topological superconductivity.


Sign in / Sign up

Export Citation Format

Share Document