equal amplitude
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 0)

Author(s):  
Ding Jia

Abstract An important task faced by all approaches of quantum gravity is to incorporate superpositions and quantify quantum uncertainties of spacetime causal relations. We address this task in 2D. By identifying a global Z2 symmetry of 1+1D quantum gravity, we show that gravitational path integral configurations come in equal amplitude pairs with timelike and spacelike relations exchanged. As a consequence, any two points are equally probable to be timelike and spacelike separated in a universe without boundary conditions. In the context of simplicial quantum gravity we identify a local symmetry of the action which shows that even with boundary conditions causal uncertainties are generically present. Depending on the boundary conditions, causal uncertainties can still be large and even maximal.


2021 ◽  
Author(s):  
Emma Holmes

Pitch discrimination is better for complex tones than for pure tones, but how more subtle differences in timbre affect pitch discrimination is not fully understood. This study compared pitch discrimination thresholds of flat-spectrum harmonic complex tones with those of natural sounds played by musical instruments of three different timbres (violin, trumpet, and flute). To investigate whether natural familiarity with sounds of particular timbres affects pitch discrimination thresholds, this study recruited musicians who were trained on one of the three instruments. We found that flautists and trumpeters could discriminate smaller differences in pitch for artificial flat-spectrum tones, despite their unfamiliar timbre, than for sounds played by musical instruments, which are regularly heard in everyday life (particularly by musicians who play those instruments). Furthermore, thresholds were no better for the instrument a musician was trained to play than for other instruments, suggesting that even extensive experience listening to and producing sounds of particular timbres does not reliably improve pitch discrimination thresholds for those timbres. The results show that timbre familiarity provides minimal improvements to auditory acuity, and physical acoustics (i.e., the presence of equal-amplitude harmonics) determine pitch-discrimination thresholds more than does experience with natural sounds and timbre-specific training.


Author(s):  
Aleksandr Ostankov ◽  
Kaung Myat San ◽  
Oleg Chernoyarov ◽  
Serguei Pergamenchtchikov
Keyword(s):  

2021 ◽  
Vol 22 (10) ◽  
pp. 5252
Author(s):  
Sean R. Tachibana ◽  
Longteng Tang ◽  
Liangdong Zhu ◽  
Yuka Takeda ◽  
Keiji Fushimi ◽  
...  

Cyanobacteriochromes (CBCRs) are promising optogenetic tools for their diverse absorption properties with a single compact cofactor-binding domain. We previously uncovered the ultrafast reversible photoswitching dynamics of a red/green photoreceptor AnPixJg2, which binds phycocyanobilin (PCB) that is unavailable in mammalian cells. Biliverdin (BV) is a mammalian cofactor with a similar structure to PCB but exhibits redder absorption. To improve the AnPixJg2 feasibility in mammalian applications, AnPixJg2_BV4 with only four mutations has been engineered to incorporate BV. Herein, we implemented femtosecond transient absorption (fs-TA) and ground state femtosecond stimulated Raman spectroscopy (GS-FSRS) to uncover transient electronic dynamics on molecular time scales and key structural motions responsible for the photoconversion of AnPixJg2_BV4 with PCB (Bpcb) and BV (Bbv) cofactors in comparison with the parent AnPixJg2 (Apcb). Bpcb adopts the same photoconversion scheme as Apcb, while BV4 mutations create a less bulky environment around the cofactor D ring that promotes a faster twist. The engineered Bbv employs a reversible clockwise/counterclockwise photoswitching that requires a two-step twist on ~5 and 35 picosecond (ps) time scales. The primary forward Pfr → Po transition displays equal amplitude weights between the two processes before reaching a conical intersection. In contrast, the primary reverse Po → Pfr transition shows a 2:1 weight ratio of the ~35 ps over 5 ps component, implying notable changes to the D-ring-twisting pathway. Moreover, we performed pre-resonance GS-FSRS and quantum calculations to identify the Bbv vibrational marker bands at ~659,797, and 1225 cm−1. These modes reveal a stronger H-bonding network around the BV cofactor A ring with BV4 mutations, corroborating the D-ring-dominant reversible photoswitching pathway in the excited state. Implementation of BV4 mutations in other PCB-binding GAF domains like AnPixJg4, AM1_1870g3, and NpF2164g5 could promote similar efficient reversible photoswitching for more directional bioimaging and optogenetic applications, and inspire other bioengineering advances.


2021 ◽  
Author(s):  
Xiangfeng Lv ◽  
Xinyue Li ◽  
Yishan Pan

Abstract The slippage initiation and induced instability of roadway surrounding rock are highly likely to cause dynamic disasters, severely influencing the safety production of mining. With the optical-mechanical monitoring test of the deformation localization of energy dissipation, this study established the optical index of coal deformation equilibrium degree under load, and obtained the evolution law of coal deformation equilibrium degree. After analyzing the relationship between tensile-sliding effect and mechanical behavior of coal deformation field, it proposed the strain energy ratio coefficient. The results indicate that the strength reduction of coal body is affected by the deformation accumulation of loading displacement field. The sliding displacement of the stable sliding type specimen occurs 5.5s earlier than tensile displacement,which is 4.4s longer than the instantaneous instability type specimen. The instability type of coal is closely related to the tangent angle of the strain energy ratio coefficient and the damage persistence characteristics. The damage accumulation of stable equal amplitude contributes to the stable failure, and the damage accumulation of interval equal amplitude influences the instantaneous instability development. The fracture expansion stage is the main stage of energy consumption damage accumulation. That is, the main energy consumption damage accumulation stage of the stable slip coal is the stable crack expansion stage, with the damage proportion of 35.89%, while the damage proportion of instantaneous instability coal in the unsteady crack expansion stage is 84.226%. The study provides theoretical reference for the fracture law and risk monitoring of coal slippage.


2020 ◽  
Vol 3 (62) ◽  
pp. 29-38
Author(s):  
S. Kovalevskyy ◽  
◽  
O. Kovalevska ◽  

Acoustic devices for determining the elasticity modulus based on the measurement of the samples frequency resonant oscillation due to the sample exposure to acoustic waves with consistently changed frequencies. Objective: Development of an algorithm for increasing the hardness of materials due to magnetic resonance imaging. Materials and methods: The paper shows the possibility of using as a uniform flux to influence the volume of thematerial of the magnetic field formed by powerful permanent magnets. The process of influencing the volume of material of the experimental samples was that the effect of a uniform magnetic flux permeating the sample is initiated in a result of resonant oscillations of the sample caused by broadband exposure of equal amplitude using a “white noise” generator and a piezoelectric emitter. Results: Treatment of samples of materials placed in a uniform magnetic field, resonant polyfrequency vibrations with nanoscale amplitude in the range of 20...80 nm, allows you to change the viscosity of the material, the modulus of elasticity of the material and the hardness of material samples to improve the performance of these materials . Conclusions: Nanoscale amplitudes of natural oscillations of objects of complex shape in energy fields, which include uniform magnetic fields, can correct the physical and mechanical properties of materials of such objects in order to achieve their identity or add strictly defined properties.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
He Huang

A dipole antenna based on a balun bandpass filter (BPF) is developed in this paper. The balun BPF employs two U-shaped resonators settled on the left side of the open-circuited transmission line and two L-shaped stubs to produce signals with equal amplitude and inverse phase. In this way, the volume of the balun BPF is reduced by half, and the distance between two output ports is dramatically decreased. Then, the balun BPF is integrated with a dipole. Instead of the traditional Γ-shaped line with a wide balun ground, two thin microstrip lines with width of 1 mm are adopted to connect the dipole and the balun BPF. The antenna bandwidth is further extended due to the fusion of the resonance of the dipole and balun BPF. As a result, the proposed antenna can operate from 4350 to 5025 MHz (covering the n79 band of 5G NR, 4400 MHz–5000 MHz), yielding a good filtering performance in the stopband. The measured half-power beamwidth is ranging from 61° to 63° and the measured gain is ranging from 7.95 to 8.5 dBi in the passband. This new balun BPF and the dual-polarized dipole based on it have great potential to be applied in 5G MIMO systems.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Bing Dai ◽  
Xinyao Luo ◽  
Li Chen ◽  
Yakun Tian ◽  
Zhijun Zhang ◽  
...  

This study systematically investigates the failure patterns, energy dissipation, and fracture behavior of rock specimens containing a vertical hole under impact loads. First, an improved damage calculation equation suitable for the analysis of rock specimens with a vertical hole is obtained based on the one-dimensional stress wave theory and the interface continuity condition. After that, the Hopkinson pressure bar (SHPB) device was used to conduct cyclic impact tests with different impact pressures and impact modes (impact pressures with equal amplitude and unequal amplitude). The experimental results suggest that, under the equal-amplitude high pressure and unequal-amplitude pressure, the degree of damage of the rock significantly increased, the bearing capacity greatly reduced, and the rock gradually transitions from having good ductility to experiencing brittle failure. The cumulative specific energy absorption value gradually increases with the increase in the cyclic impact. Compared to that of the equal impact condition, the degree of damage to the rock is more severe for the case of equal-amplitude high pressure and unequal impact, and the failure mode undergoes a transformation from transverse tensile failure to transverse tensile failure-axial splitting failure combination and axial splitting failure. Through the analysis of rock energy changes and rock failure patterns during cyclic impact, it will be helpful to predict and control the fracture caused by local stress concentration during excavation, thus can reduce the cost of support and reinforcement in excavation and improve the stability of surrounding rocks.


2019 ◽  
Vol 97 (11) ◽  
pp. 1225-1228
Author(s):  
Esra Bilal Önder ◽  
Fatih Önder

The aim of this study was to determine students’ understanding of fundamental AC signal concepts, such as frequency, amplitude, and phase difference. The participants in the study were 179 students (44 female and 135 male) attending Izmir Vocational School who were enrolled in the Analog Electronics Course. The data of the study were collected by means of three open-ended questions and semi-structured interviews. In the questions, students were given a graph of an AC signal and asked to draw a signal with equal frequency but higher amplitude, a signal with equal amplitude but higher frequency, and a signal with a certain phase difference. The main aim of the interviews was to provide a deeper insight into the difficulties detected in the analysis of the questions. The data analysis showed that the students confused the concepts of frequency and amplitude and had difficulties in interpreting the signals that exhibited a phase difference.


Sign in / Sign up

Export Citation Format

Share Document