scholarly journals Quasiperiodic magnetic chain as a spin filter for arbitrary spin states

2019 ◽  
Vol 99 (13) ◽  
Author(s):  
Biplab Pal
Science ◽  
2017 ◽  
Vol 358 (6365) ◽  
pp. 896-901 ◽  
Author(s):  
Robert C. Devlin ◽  
Antonio Ambrosio ◽  
Noah A. Rubin ◽  
J. P. Balthasar Mueller ◽  
Federico Capasso

Optical elements that convert the spin angular momentum (SAM) of light into vortex beams have found applications in classical and quantum optics. These elements—SAM-to–orbital angular momentum (OAM) converters—are based on the geometric phase and only permit the conversion of left- and right-circular polarizations (spin states) into states with opposite OAM. We present a method for converting arbitrary SAM states into total angular momentum states characterized by a superposition of independent OAM. We designed a metasurface that converts left- and right-circular polarizations into states with independent values of OAM and designed another device that performs this operation for elliptically polarized states. These results illustrate a general material-mediated connection between SAM and OAM of light and may find applications in producing complex structured light and in optical communication.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 426 ◽  
Author(s):  
Stefan Heusler ◽  
Malte Ubben

A generalization of the famous Dirac belt trick opens up the way to a haptic model for quantum phases of fermions and bosons in Hilbert space based on knot theory. We introduce a simple paper strip model as an aid for visualization of the quantum phases before and after Hopf-mapping, which can be extended to arbitrary spin states with almost no mathematical formalism. Knot theory arises naturally, leading to the Jones polynomials derived from Artin’s braid group for fermionic knots and for bosonic links. The paper strip model explicitly illuminates the relation between these knots and links within the S U ( 2 ) -representation of spin-jstates in C 2 j + 1 before Hopf-mapping and the number p = 2 j of nodes in the stellar representation in C P 1 after Hopf mapping.


1994 ◽  
Vol 4 (4) ◽  
pp. 493-497 ◽  
Author(s):  
O. Veits ◽  
R. Oppermann ◽  
M. Binderberger ◽  
J. Stein
Keyword(s):  

1980 ◽  
Vol 41 (C10) ◽  
pp. C10-143-C10-154 ◽  
Author(s):  
A. Faessler

2013 ◽  
Vol 58 (11) ◽  
pp. 1046-1054 ◽  
Author(s):  
A.G. Nikitin ◽  

2020 ◽  
Author(s):  
Pierpaolo Morgante ◽  
Roberto Peverati

<div><div><div><p>In this Letter, we introduce a new database called carbon long bond 18 (CLB18), composed of 18 structures with one long C–C bond. We use this new database to evaluate the performance of several low-cost methods commonly used for geometry optimization of medium and large molecules. We found that the long bonds in CLB18 are electronically different from those found in barrier heights databases. We also report the unexpected correlation between the results of CLB18 and those of the energetics of spin states in transition-metal complexes. Given this unique property, CLB18 can be a useful tool for assessing existing electronic structure calculation methods and developing new ones.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document