scholarly journals Second and fourth moments of the charge density and neutron-skin thickness of atomic nuclei

2021 ◽  
Vol 104 (2) ◽  
Author(s):  
Tomoya Naito ◽  
Gianluca Colò ◽  
Haozhao Liang ◽  
Xavier Roca-Maza
Universe ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 119 ◽  
Author(s):  
G. Fiorella Burgio ◽  
Isaac Vidaña

Background. We investigate possible correlations between neutron star observables and properties of atomic nuclei. In particular, we explore how the tidal deformability of a 1.4 solar mass neutron star, M1.4, and the neutron-skin thickness of 48Ca and 208Pb are related to the stellar radius and the stiffness of the symmetry energy. Methods. We examine a large set of nuclear equations of state based on phenomenological models (Skyrme, NLWM, DDM) and ab initio theoretical methods (BBG, Dirac–Brueckner, Variational, Quantum Monte Carlo). Results: We find strong correlations between tidal deformability and NS radius, whereas a weaker correlation does exist with the stiffness of the symmetry energy. Regarding the neutron-skin thickness, weak correlations appear both with the stiffness of the symmetry energy, and the radius of a M1.4. Our results show that whereas the considered EoS are compatible with the largest masses observed up to now, only five microscopic models and four Skyrme forces are simultaneously compatible with the present constraints on L and the PREX experimental data on the 208Pb neutron-skin thickness. We find that all the NLWM and DDM models and the majority of the Skyrme forces are excluded by these two experimental constraints, and that the analysis of the data collected by the NICER mission excludes most of the NLWM considered. Conclusion. The tidal deformability of a M1.4 and the neutron-skin thickness of atomic nuclei show some degree of correlation with nuclear and astrophysical observables, which however depends on the ensemble of adopted EoS.


Science ◽  
2021 ◽  
Vol 371 (6526) ◽  
pp. 260-264 ◽  
Author(s):  
Junki Tanaka ◽  
Zaihong Yang ◽  
Stefan Typel ◽  
Satoshi Adachi ◽  
Shiwei Bai ◽  
...  

The surface of neutron-rich heavy nuclei, with a neutron skin created by excess neutrons, provides an important terrestrial model system to study dilute neutron-rich matter. By using quasi-free α cluster–knockout reactions, we obtained direct experimental evidence for the formation of α clusters at the surface of neutron-rich tin isotopes. The observed monotonous decrease of the reaction cross sections with increasing mass number, in excellent agreement with the theoretical prediction, implies a tight interplay between α-cluster formation and the neutron skin. This result, in turn, calls for a revision of the correlation between the neutron-skin thickness and the density dependence of the symmetry energy, which is essential for understanding neutron stars. Our result also provides a natural explanation for the origin of α particles in α decay.


2010 ◽  
Vol 834 (1-4) ◽  
pp. 502c-504c ◽  
Author(s):  
X.Y. Sun ◽  
D.Q. Fang ◽  
Y.G. Ma ◽  
X.Z. Cai ◽  
X.G. Cao ◽  
...  

2017 ◽  
Vol 96 (2) ◽  
Author(s):  
Soonchul Choi ◽  
Ying Zhang ◽  
Myung-Ki Cheoun ◽  
Youngshin Kwon ◽  
Kyungsik Kim ◽  
...  

2004 ◽  
Vol 731 ◽  
pp. 224-234 ◽  
Author(s):  
A. Krasznahorkay ◽  
H. Akimune ◽  
A.M. van den Berg ◽  
N. Blasi ◽  
S. Brandenburg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document