Binding energy estimates for charmed few-body systems

1983 ◽  
Vol 27 (5) ◽  
pp. 2085-2089 ◽  
Author(s):  
B. F. Gibson ◽  
C. B. Dover ◽  
G. Bhamathi ◽  
D. R. Lehman
1996 ◽  
Vol 166 (4) ◽  
pp. 447-448 ◽  
Author(s):  
Vladimir I. Belyavskii ◽  
Yurii V. Kopaev ◽  
N.V. Kornyakov

2016 ◽  
pp. 4024-4028 ◽  
Author(s):  
Sergey I. Pokutnyi ◽  
Wlodzimierz Salejda

The possibility of occurrence of the excitonic  quasimolecule formed of spatially separated electrons and holes in a nanosystem that consists  of  CuO quantum dots synthesized in a silicate glass matrix. It is shown that the major contribution to the excitonic quasimolecule binding energy is made by the energy of the exchange interaction of electrons with holes and this contribution is much more substantial than the contribution of the energy of Coulomb interaction between the electrons and holes.


Author(s):  
Akhileshwar Srivastava ◽  
Divya Singh

Presently, an emerging disease (COVID-19) has been spreading across the world due to coronavirus (SARS-CoV2). For treatment of SARS-CoV2 infection, currently hydroxychloroquine has been suggested by researchers, but it has not been found enough effective against this virus. The present study based on in silico approaches was designed to enhance the therapeutic activities of hydroxychloroquine by using curcumin as an adjunct drug against SARS-CoV2 receptor proteins: main-protease and S1 receptor binding domain (RBD). The webserver (ANCHOR) showed the higher protein stability for both receptors with disordered score (<0.5). The molecular docking analysis revealed that the binding energy (-24.58 kcal/mol) of hydroxychloroquine was higher than curcumin (-20.47 kcal/mol) for receptor main-protease, whereas binding energy of curcumin (<a>-38.84</a> kcal/mol) had greater than hydroxychloroquine<a> (-35.87</a> kcal/mol) in case of S1 receptor binding domain. Therefore, this study suggested that the curcumin could be used as combination therapy along with hydroxychloroquine for disrupting the stability of SARS-CoV2 receptor proteins


2020 ◽  
Author(s):  
Zhaoxi Sun

Host-guest binding remains a major challenge in modern computational modelling. The newest 7<sup>th</sup> statistical assessment of the modeling of proteins and ligands (SAMPL) challenge contains a new series of host-guest systems. The TrimerTrip host binds to 16 structurally diverse guests. Previously, we have successfully employed the spherical coordinates as the collective variables coupled with the enhanced sampling technique metadynamics to enhance the sampling of the binding/unbinding event, search for possible binding poses and predict the binding affinities in all three host-guest binding cases of the 6<sup>th</sup> SAMPL challenge. In this work, we employed the same protocol to investigate the TrimerTrip host in the SAMPL7 challenge. As no binding pose is provided by the SAMPL7 host, our simulations initiate from randomly selected configurations and are proceeded long enough to obtain converged free energy estimates and search for possible binding poses. The predicted binding affinities are in good agreement with the experimental reference, and the obtained binding poses serve as a nice starting point for end-point or alchemical free energy calculations.


2019 ◽  
Author(s):  
Sukanya Sasmal ◽  
Léa El Khoury ◽  
David Mobley

The Drug Design Data Resource (D3R) Grand Challenges present an opportunity to assess, in the context of a blind predictive challenge, the accuracy and the limits of tools and methodologies designed to help guide pharmaceutical drug discovery projects. Here, we report the results of our participation in the D3R Grand Challenge 4, which focused on predicting the binding poses and affinity ranking for compounds targeting the beta-amyloid precursor protein (BACE-1). Our ligand similarity-based protocol using HYBRID (OpenEye Scientific Software) successfully identified poses close to the native binding mode for most of the ligands with less than 2 A RMSD accuracy. Furthermore, we compared the performance of our HYBRID-based approach to that of AutoDock Vina and Dock 6 and found that HYBRID performed better here for pose prediction. We also conducted end-point free energy estimates on protein-ligand complexes using molecular mechanics combined with generalized Born surface area method (MM-GBSA). We found that the binding affinity ranking based on MM-GBSA scores have poor correlation with the experimental values. Finally, the main lessons from our participation in D3R Grand Challenge 4 suggest that: i) the generation of the macrocycles conformers is a key step for successful pose prediction, ii) the protonation states of the BACE-1 binding site should be treated carefully, iii) the MM-GBSA method could not discriminate well between different predicted binding poses, and iv) the MM-GBSA method does not perform well at predicting protein-ligand binding affinities here.


Author(s):  
A. S. Sharipov ◽  
◽  
B. I. Loukhovitski ◽  

The size-dependence of different physical properties of atomic clusters (by the example of binding energy, collision diameter, and static isotropic polarizability) is discussed.


2020 ◽  
Vol 75 (5) ◽  
pp. 501-506
Author(s):  
M. A. Nosov ◽  
S. V. Kolesov ◽  
A. V. Bolshakova ◽  
G. N. Nurislamova

Sign in / Sign up

Export Citation Format

Share Document