bace 1
Recently Published Documents


TOTAL DOCUMENTS

360
(FIVE YEARS 74)

H-INDEX

41
(FIVE YEARS 6)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 105
Author(s):  
Jacopo Meldolesi

Upon its discovery, Alzheimer’s, the neurodegenerative disease that affects many millions of patients in the world, remained without an effective therapy. The first drugs, made available near the end of last century, induced some effects, which remained only marginal. More promising effects are now present, induced by two approaches. Blockers of the enzyme BACE-1 induce, in neurons and glial cells, decreased levels of Aβ, the key peptide of the Alzheimer’s disease. If administered at early AD steps, the BACE-1 blockers preclude further development of the disease. However, they have no effect on established, irreversible lesions. The extracellular vesicles secreted by mesenchymal stem cells induce therapy effects analogous, but more convenient, than the effects of their original cells. After their specific fusion to target cells, the action of these vesicles depends on their ensuing release of cargo molecules, such as proteins and many miRNAs, active primarily on the cell cytoplasm. Operationally, these vesicles exhibit numerous advantages: they exclude, by their accurate selection, the heterogeneity of the original cells; exhibit molecular specificity due to their engineering and drug accumulation; and induce effective actions, mediated by variable concentrations of factors and molecules and by activation of signaling cascades. Their strength is reinforced by their combination with various factors and processes. The recent molecular and operations changes, induced especially by the stem cell target cells, result in encouraging and important improvement of the disease. Their further development is expected in the near future.


2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Vasudevan Mani ◽  
Nur Syamimi Mohd Azahan ◽  
Kalavathy Ramasamy ◽  
Siong Meng Lim ◽  
Abu Bakar Abdul Majeed

Murraya koenigii leaves contain mahanimbine, a carbazole alkaloid, reported with improving cholinergic neuronal transmission and reducing neuroinflammation in the CNS. The current research investigated the effects of mahanimbine on age-related memory deficits, oxidative stress, cholinergic dysfunction, amyloid formation, and neuroinflammation in aged mice (16 months old). Mahanimbine was administered (1 and 2 mg/kg, p.o.) daily to groups of aged mice for 30 days. The Morris water maze (MWM) task was performed to study spatial learning (escape latency (EL) and swimming distance (SD)) and memory (probe test). The levels of malondialdehyde (MDA), glutathione (GSH), acetylcholine (ACh), acetylcholinesterase (AChE), β-amyloid (Aβ1-40 and Aβ1-42), β-secretase (BACE-1), as well as neuroinflammation markers (total cyclooxygenase (COX) and COX-2 expression), were measured from the isolated brain. Mahanimbine reduced the EL time and SD in the MWM test. From the probe trial, the mahanimbine-treated group spent more time in the targeted quadrant related to the age-matched control, which indicated the enhancement of memory retention. From the biochemical tests, the treatment decreased MDA, AChE, Aβ1-40, and Aβ1-42, BACE-1, total COX activity, and COX-2 expression. It also raised the brain GSH and ACh levels in aged mice compared to age-matched control. These results have supported the reversal of memory dysfunctions by mahanimbine in aged mice and hypothesized that it could be a potential target to treat age-related neurodegenerative disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thanit Kunkeaw ◽  
Uthaiwan Suttisansanee ◽  
Dunyaporn Trachootham ◽  
Jirarat Karinchai ◽  
Boonrat Chantong ◽  
...  

AbstractAlzheimer’s disease (AD), one type of dementia, is a complex disease affecting people globally with limited drug treatment. Thus, natural products are currently of interest as promising candidates because of their cost-effectiveness and multi-target abilities. Diplazium esculentum (Retz.) Sw., an edible fern, inhibited acetylcholinesterase in vitro, inferring that it might be a promising candidate for AD treatment by supporting cholinergic neurons. However, evidence demonstrating anti-AD properties of this edible plant via inhibiting of neurotoxic peptides production, amyloid beta (Aβ), both in vitro and in vivo is lacking. Thus, the anti-AD properties of D. esculentum extract both in vitro and in Drosophila models of Aβ-mediated toxicity were elucidated. Findings showed that an ethanolic extract exhibited high phenolics and flavonoids, contributing to antioxidant and inhibitory activities against AD-related enzymes. Notably, the extract acted as a BACE-1 blocker and reduced amyloid beta 42 (Aβ42) peptides in Drosophila models, resulting in improved locomotor behaviors. Information gained from this study suggested that D. esculentum showed potential for AD amelioration and prevention. Further investigations in vertebrates or humans are required to determine the effective doses of D. esculentum against AD, particularly via amyloidogenic pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luz Camacho-Castillo ◽  
Bryan V. Phillips-Farfán ◽  
Gabriela Rosas-Mendoza ◽  
Aidee Baires-López ◽  
Danira Toral-Ríos ◽  
...  

AbstractMetabolic disturbances are linked to neurodegenerative diseases such as Alzheimer disease (AD). However, the cellular mechanisms underlying this connection are unclear. We evaluated the role of oxidative stress (OS), during early metabolic syndrome (MetS), on amyloidogenic processes in a MetS rat model induced by sucrose. MetS caused OS damage as indicated by serum and hypothalamus lipid peroxidation and elevated serum catalase activity. Tissue catalase and superoxide dismutase activity were unchanged by MetS, but gene expression of nuclear factor erythroid-derived 2-like 2 (NFE2L2), which up-regulates expression of antioxidant enzymes, was higher. Expression of amyloid-β cleaving enzyme 1 (BACE-1) and amyloid precursor protein (APP), key proteins in the amyloidogenesis pathway, were slightly increased by sucrose-intake in the hippocampus and hypothalamus. Activation and expression of protein kinase B (PKB) and AMP-dependent protein kinase (AMPK), pivotal proteins in metabolism and energy signaling, were similarly affected in the hippocampus and hypothalamus of MetS rats. Brain creatine kinase activity decreased in brain tissues from rats with MetS, mainly due to irreversible oxidation. Chronic metformin administration partially reversed oxidative damage in sucrose-fed animals, together with increased AMPK activation; probably by modulating BACE-1 and NFE2L2. AMPK activation may be considered as a preventive therapy for early MetS and associated neurodegenerative diseases.


2021 ◽  
Vol 22 (17) ◽  
pp. 9559
Author(s):  
Rahim Ullah ◽  
Gowhar Ali ◽  
Ajmal Khan ◽  
Sajjad Ahmad ◽  
Ahmed Al-Harrasi

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder. This study was designed to investigate the effects of cyclopentanone derivative i.e., 2-(hydroxyl-(3-nitrophenyl)methyl)cyclopentanone (3NCP) on behavior, amyloid β (Aβ) plaque deposition, and βAPP cleaving enzyme-1 (BACE-1) expression in the 5xFAD mouse brain. In this study, computational studies were conducted to predict the binding mode of the 3NCP with target sites of the β-secretase. In vivo studies were performed on the 5xFAD mice model of AD using different behavioral test models like light/dark box, elevated plus maze (EPM), and the Barnes maze tests for the assessment of anxiety, spatial learning and memory. The thioflavin-S staining, immunohistochemistry (IHC), and RT-PCR studies were carried out to find the effect of the 3NCP on the β-amyloid plaques formation and BACE-1 expression. The results of the computational studies showed that the 3NCP has excellent binding affinities for beta-secretase. The light/dark box study depicted that the 3NCP does not cause anxiety. The 3NCP treatment effects in the EPM and Barnes maze tests showed a significant effect on learning and memory. Furthermore, the results of the thioflavin staining and IHC revealed that the 3NCP significantly reduced the formation of the beta-amyloid plaques in brain tissues. Moreover, the RT-PCR study showed that 3NCP significantly reduced the BACE-1 expression in the brain. Conclusively, the results of the current study demonstrate that the 3NCP may be a potential candidate for AD treatment in the future.


2021 ◽  
Vol 350 ◽  
pp. S110-S111
Author(s):  
M. Martins ◽  
M. Maia ◽  
E. Gil-Martins ◽  
L. Gales ◽  
F. Remião ◽  
...  

Author(s):  
Julio Rea Martinez ◽  
Gordana Šelo ◽  
María Ángeles Fernández-Arche ◽  
Beatriz Bermudez ◽  
María Dolores García-Giménez
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document