scholarly journals Two-particle azimuthal angle correlations and azimuthal charge balance function in relativistic heavy ion collisions

2009 ◽  
Vol 79 (5) ◽  
Author(s):  
Yanping Huang ◽  
Li Na ◽  
Jiaxin Du ◽  
Zhiming Li ◽  
Yuanfang Wu
2014 ◽  
Vol 23 (08) ◽  
pp. 1450036 ◽  
Author(s):  
Ying-Hua Pan ◽  
Wei-Ning Zhang

Experiment and lattice simulation show that the quark–gluon plasma (QGP) system displays strong interaction between constituents at temperature a few times the critical temperature Tc. This QGP picture can be explained by assuming that the QGP matter above Tc is rich in different kinds of bound states, namely resonance-like QGP (RQGP). The chemical composition of the QGP system produced in ultra-relativistic heavy-ion collisions can be investigated through a general charge balance function which describes two-wave quark production during expansion afterward. In this paper, we investigate the signals of this RQGP through general charge balance functions. We find that the quasiparticles in QGP contribute a little to the balance functions because of their heavy masses. The balance functions reduce to the situation discussed before where only one-wave charge production is involved if only the quasiparticles in QGP are considered. However, the baryonic bound states in QGP have a significant effect on the balance function [Formula: see text], causing a dip in the [Formula: see text] balance function at small Δy. The existence of the binary and baryonic bound states amplify the negative dip of the balance function BpK-(Δy) at Δy ∽ 1.


2012 ◽  
Vol 27 (29) ◽  
pp. 1250168 ◽  
Author(s):  
RANJITA K. MOHAPATRA ◽  
P. S. SAUMIA ◽  
AJIT M. SRIVASTAVA

We show that flow anisotropies in relativistic heavy-ion collisions can be analyzed using a certain technique of shape analysis of excursion sets recently proposed by us for CMBR fluctuations to investigate anisotropic expansion history of the universe. The technique analyzes shapes (sizes) of patches above (below) certain threshold value for transverse energy/particle number (the excursion sets) as a function of the azimuthal angle and rapidity. Modeling flow by imparting extra anisotropic momentum to the momentum distribution of particles from HIJING, we compare the resulting distributions for excursion sets at two different azimuthal angles. Angles with maximum difference in the two distributions identify the event plane, and the magnitude of difference in the two distributions relates to the magnitude of momentum anisotropy, i.e. elliptic flow.


Sign in / Sign up

Export Citation Format

Share Document