scholarly journals Quenching factor for low-energy nuclear recoils in a plastic scintillator

2012 ◽  
Vol 85 (6) ◽  
Author(s):  
L. Reichhart ◽  
D.Yu. Akimov ◽  
H. M. Araújo ◽  
E. J. Barnes ◽  
V. A. Belov ◽  
...  
2019 ◽  
Vol 79 (12) ◽  
Author(s):  
G. Angloher ◽  
F. Ardellier-Desages ◽  
A. Bento ◽  
L. Canonica ◽  
A. Erhart ◽  
...  

AbstractCoherent elastic neutrino–nucleus scattering ($$\hbox {CE}\nu \hbox {NS}$$CEνNS) offers a unique way to study neutrino properties and to search for new physics beyond the Standard Model. Nuclear reactors are promising sources to explore this process at low energies since they deliver large fluxes of anti-neutrinos with typical energies of a few MeV. In this paper, a new-generation experiment to study $$\hbox {CE}\nu \hbox {NS}$$CEνNS is described. The NUCLEUS experiment will use cryogenic detectors which feature an unprecedentedly low-energy threshold and a time response fast enough to be operated under above-ground conditions. Both sensitivity to low-energy nuclear recoils and a high event rate tolerance are stringent requirements to measuring $$\hbox {CE}\nu \hbox {NS}$$CEνNS of reactor anti-neutrinos. A new experimental site, the Very-Near-Site (VNS), at the Chooz nuclear power plant in France is described. The VNS is located between the two 4.25 $$\hbox {GW}_{\mathrm {th}}$$GWth reactor cores and matches the requirements of NUCLEUS. First results of on-site measurements of neutron and muon backgrounds, the expected dominant background contributions, are given. In this paper a preliminary experimental set-up with dedicated active and passive background reduction techniques and first background estimations are presented. Furthermore, the feasibility to operate the detectors in coincidence with an active muon veto at shallow overburden is studied. The paper concludes with a sensitivity study pointing out the physics potential of NUCLEUS at the Chooz nuclear power plant.


2020 ◽  
Vol 32 (2) ◽  
pp. 025902
Author(s):  
E Baracchini ◽  
L Benussi ◽  
S Bianco ◽  
C Capoccia ◽  
M Caponero ◽  
...  

2008 ◽  
Vol 52 (9(3)) ◽  
pp. 908-912
Author(s):  
C. Kim ◽  
R. J. Hu ◽  
B. Hong ◽  
H. C. Kim ◽  
K. S. Lee ◽  
...  

2016 ◽  
Vol 94 (12) ◽  
Author(s):  
B. J. Scholz ◽  
A. E. Chavarria ◽  
J. I. Collar ◽  
P. Privitera ◽  
A. E. Robinson

2019 ◽  
Vol 209 ◽  
pp. 01034
Author(s):  
Vincenzo Vitale

The core of the High-Energy Particle Detector (HEPD) on board of the China Seismo-Electromagnetic Satellite (CSES) is a segmented calorimeter, which is composed with an upper tower of plastic scintillator counters and a bottom array of LYSO large crystals. Electrons with energy below 100MeV, protons and light nuclei, below few hundreds ofMeV/nucleon are fully contained within this calorimeter. Mainly the LYSO array (density 7.3 g/cm3, thickness around 29.2 g/cm2) extends the HEPD energy range, allowing those measurements (solar energetic particles, low-energy cosmic rays) which are more related to astroparticle physics topics. Two identical copies of HEPD, and then of its calorimeter, exist: the Flight (FM) and the Qualification (QM) models. While the FM has achieved the orbit on board of the CSES satellite in February 2018, the Qualification Model, is used, at ground, for tests and calibrations. A report on the characterization of this compact particle space detector and on preliminary studies and results, will be given.


Sign in / Sign up

Export Citation Format

Share Document