liquid xenon
Recently Published Documents


TOTAL DOCUMENTS

639
(FIVE YEARS 56)

H-INDEX

42
(FIVE YEARS 4)

Author(s):  
Jianglai Liu

Dark matter, an invisible substance which constitutes 85% of the matter in the observable universe, is one of the greatest puzzles in physics and astronomy today. Dark matter can be made of a new type of fundamental particle, not yet observed due to its feeble interactions with visible matter. In this talk, we present the first results of PandaX-4T, a 4-ton-scale liquid xenon dark matter observatory, searching for these dark matter particles from deep underground. We will briefly summarize the performance of PandaX-4T, introduces details in the data analysis, and present the latest search results on dark matter-nucleon interactions.


2022 ◽  
Vol 17 (01) ◽  
pp. P01008
Author(s):  
Z. Huang ◽  
A. Abdukerim ◽  
Z. Bo ◽  
W. Chen ◽  
X. Chen ◽  
...  

Abstract The dual-phase xenon time projection chamber (TPC) is one of the most sensitive detector technology for dark matter direct search, where the energy deposition of incoming particle can be converted into photons and electrons through xenon excitation and ionization. The detector response to signal energy deposition varies significantly with the electric field in liquid xenon. We study the detector's light yield and its dependence on the electric field in the PandaX-II dual-phase detector containing 580 kg liquid xenon in the sensitive volume. From our measurements, the light yield at electric fields from 0 V/cm to 317 V/cm is obtained for energy depositions up to 236 keV.


2021 ◽  
Vol 104 (11) ◽  
Author(s):  
D. J. Temples ◽  
J. McLaughlin ◽  
J. Bargemann ◽  
D. Baxter ◽  
A. Cottle ◽  
...  
Keyword(s):  

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Laura Baudis ◽  
Patricia Sanchez-Lucas ◽  
Kevin Thieme

AbstractDetectors using liquid xenon as target are widely deployed in rare event searches. Conclusions on the interacting particle rely on a precise reconstruction of the deposited energy which requires calibrations of the energy scale of the detector by means of radioactive sources. However, a microscopic calibration, i.e. the translation from the number of excitation quanta into deposited energy, also necessitates good knowledge of the energy required to produce single scintillation photons or ionisation electrons in liquid xenon. The sum of these excitation quanta is directly proportional to the deposited energy in the target. The proportionality constant is the mean excitation energy and is commonly known as W-value. Here we present a measurement of the W-value with electronic recoil interactions in a small dual-phase xenon time projection chamber with a hybrid (photomultiplier tube and silicon photomultipliers) photosensor configuration. Our result is based on calibrations at $$\mathcal {O}(1{-}10\,{\hbox {keV}})$$ O ( 1 - 10 keV ) with internal $${^{37}\hbox {Ar}}$$ 37 Ar and $${^{83\text {m}}\hbox {Kr}}$$ 83 m Kr sources and single electron events. We obtain a value of $$W={11.5}{} \, ^{+0.2}_{-0.3} \, \mathrm {(syst.)} \, \hbox {eV}$$ W = 11.5 - 0.3 + 0.2 ( syst . ) eV , with negligible statistical uncertainty, which is lower than previously measured at these energies. If further confirmed, our result will be relevant for modelling the absolute response of liquid xenon detectors to particle interactions.


2021 ◽  
Vol 16 (09) ◽  
pp. P09005
Author(s):  
F. Arneodo ◽  
G. Bruno ◽  
V. Conicella ◽  
A. Di Giovanni ◽  
G. Franchi ◽  
...  
Keyword(s):  

2021 ◽  
Vol 16 (08) ◽  
pp. P08002
Author(s):  
M. Wagenpfeil ◽  
T. Ziegler ◽  
J. Schneider ◽  
A. Fieguth ◽  
M. Murra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document