scholarly journals Vacuum energy in the effective field theory of general relativity

2019 ◽  
Vol 100 (4) ◽  
Author(s):  
J. Gegelia ◽  
Ulf-G. Meißner
2016 ◽  
Vol 31 (06) ◽  
pp. 1630007 ◽  
Author(s):  
Steven Weinberg

I reminisce about the early development of effective field theories of the strong interactions, comment briefly on some other applications of effective field theories, and then take up the idea that the Standard Model and General Relativity are the leading terms in an effective field theory. Finally, I cite recent calculations that suggest that the effective field theory of gravitation and matter is asymptotically safe.


2020 ◽  
Vol 102 (4) ◽  
Author(s):  
Noah Sennett ◽  
Richard Brito ◽  
Alessandra Buonanno ◽  
Victor Gorbenko ◽  
Leonardo Senatore

2015 ◽  
Vol 24 (12) ◽  
pp. 1544019 ◽  
Author(s):  
Carlos Barceló ◽  
Raúl Carballo-Rubio ◽  
Luis J. Garay

The cosmological constant problem can be understood as the failure of the decoupling principle behind effective field theory, so that some quantities in the low-energy theory are extremely sensitive to the high-energy properties. While this reflects the genuine character of the cosmological constant, finding an adequate effective field theory framework which avoids this naturalness problem may represent a step forward to understand nature. Following this intuition, we consider a minimal modification of the structure of general relativity which as an effective theory permits to work consistently at low energies, i.e. below the quantum gravity scale. This effective description preserves the classical phenomenology of general relativity and the particle spectrum of the standard model, at the price of changing our conceptual and mathematical picture of spacetime.


2014 ◽  
Vol 23 (12) ◽  
pp. 1442012 ◽  
Author(s):  
Justin Khoury ◽  
Godfrey E. J. Miller ◽  
Andrew J. Tolley

Traditional derivations of general relativity (GR) from the graviton degrees of freedom assume spacetime Lorentz covariance as an axiom. In this paper, we survey recent evidence that GR is the unique spatially-covariant effective field theory of the transverse, traceless graviton degrees of freedom. The Lorentz covariance of GR, having not been assumed in our analysis, is thus plausibly interpreted as an accidental or emergent symmetry of the gravitational sector. From this point of view, Lorentz covariance is a necessary feature of low-energy graviton dynamics, not a property of spacetime. This result has revolutionary implications for fundamental physics.


2017 ◽  
Vol 32 (06n07) ◽  
pp. 1750037 ◽  
Author(s):  
Yugo Abe ◽  
Masaatsu Horikoshi ◽  
Yoshiharu Kawamura

We study physics concerning the cosmological constant problem in the framework of effective field theory and suggest that a dominant part of dark energy can originate from gravitational corrections of vacuum energy, under the assumption that the classical gravitational fields do not couple to a large portion of the vacuum energy effectively, in spite of the coupling between graviton and matters at a microscopic level. Our speculation is excellent with terascale supersymmetry.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Dimitrios Kosmopoulos ◽  
Andres Luna

Abstract We obtain the quadratic-in-spin terms of the conservative Hamiltonian describing the interactions of a binary of spinning bodies in General Relativity through $$ \mathcal{O} $$ O (G2) and to all orders in velocity. Our calculation extends a recently-introduced framework based on scattering amplitudes and effective field theory to consider non-minimal coupling of the spinning objects to gravity. At the order that we consider, we establish the validity of the formula proposed in [1] that relates the impulse and spin kick in a scattering event to the eikonal phase.


2013 ◽  
Vol 28 (13) ◽  
pp. 1330017 ◽  
Author(s):  
TIM A. KOSLOWSKI

Shape dynamics is a gauge theory based on spatial diffeomorphism- and Weyl-invariance which is locally indistinguishable from classical general relativity. If taken seriously, it suggests that the space–time geometry picture that underlies general relativity can be replaced by a picture based on spatial conformal geometry. This classically well-understood trading of gauge symmetries opens new conceptual avenues in many approaches to quantum gravity. This paper focusses on the general implications for quantum gravity and effective field theory and considers the application of the shape dynamics picture in the exact renormalization group approaches to gravity, loop- and polymer-quantization approaches to gravity and low energy effective field theories. Also, the interpretation of known results is discussed through the shape dynamics picture, particularly holographic renormalization and the problem of time in canonical quantum gravity.


Sign in / Sign up

Export Citation Format

Share Document