scholarly journals Detectability of ultralight scalar field dark matter with gravitational-wave detectors

2019 ◽  
Vol 100 (12) ◽  
Author(s):  
Soichiro Morisaki ◽  
Teruaki Suyama
2020 ◽  
Author(s):  
◽  
Cari Powell

The aim of this research is to use modern techniques in scalar field Cosmol-ogy to produce methods of detecting gravitational waves and apply them to current gravitational waves experiments and those that will be producing results in the not too distant future. In the first chapter we discuss dark matter and some of its candidates, specifically, the axion. We then address its relationship with gravitational waves. We also discuss inflation and how it can be used to detect gravitational waves. Chapter 2 concentrates on constructing a multi field system of axions in order to increase the mass range of the ultralight axion, putting it into the observation range of pul-sar timing arrays. Chapter 3 discusses non-attractor inflation which is able to enhance stochastic background gravitational waves at scales that allows them to be measured by gravitational wave experiments. Chapter 4 uses a similar method to chapter 3 and applies it to 3-point overlap functions for tensor, scalar and a combination of the two polarisations.


2005 ◽  
Vol 20 (06) ◽  
pp. 1148-1154 ◽  
Author(s):  
ALEXANDER KUSENKO

The observed velocities of radio pulsars, which range in the hundreds kilometers per second, and many of which exceed 1000 km/s, are not explained by the standard physics of the supernova explosion. However, if a sterile neutrino with mass in the 1–20 keV range exists, it would be emitted asymmetrically from a cooling neutron star, which could give it a sufficient recoil to explain the pulsar motions. The same particle can be the cosmological dark mater. Future observations of X-ray telescopes and gravitational wave detectors can confirm or rule out this explanation.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Chun-Hao Lee ◽  
Chrisna Setyo Nugroho ◽  
Martin Spinrath

AbstractWe present prospects for discovering dark matter scattering in gravitational wave detectors. The focus of this work is on light, particle dark matter with masses below 1 $$\hbox {GeV}/\text {c}^{2}$$ GeV / c 2 . We investigate how a potential signal compares to typical backgrounds like thermal and quantum noise, first in a simple toy model and then using KAGRA as a realistic example. That shows that for a discovery much lighter and cooler mirrors would be needed. We also give some brief comments on space-based experiments and future atomic interferometers.


2020 ◽  
Vol 1468 ◽  
pp. 012027
Author(s):  
Koji Nagano ◽  
Ippei Obata ◽  
Tomohiro Fujita ◽  
Yuta Michimura

Nature ◽  
2021 ◽  
Vol 600 (7889) ◽  
pp. 424-428
Author(s):  
Sander M. Vermeulen ◽  
Philip Relton ◽  
Hartmut Grote ◽  
Vivien Raymond ◽  
Christoph Affeldt ◽  
...  

AbstractThe nature of dark matter remains unknown to date, although several candidate particles are being considered in a dynamically changing research landscape1. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities2–8. Here we describe a direct search for scalar field dark matter using a gravitational-wave detector, which operates beyond the quantum shot-noise limit. We set new upper limits on the coupling constants of scalar field dark matter as a function of its mass, by excluding the presence of signals that would be produced through the direct coupling of this dark matter to the beam splitter of the GEO600 interferometer. These constraints improve on bounds from previous direct searches by more than six orders of magnitude and are, in some cases, more stringent than limits obtained in tests of the equivalence principle by up to four orders of magnitude. Our work demonstrates that scalar field dark matter can be investigated or constrained with direct searches using gravitational-wave detectors and highlights the potential of quantum-enhanced interferometry for dark matter detection.


2018 ◽  
Vol 97 (7) ◽  
Author(s):  
Asimina Arvanitaki ◽  
Peter W. Graham ◽  
Jason M. Hogan ◽  
Surjeet Rajendran ◽  
Ken Van Tilburg

Sign in / Sign up

Export Citation Format

Share Document