scholarly journals Dual equivalence between self-dual and topologically massive B∧F models coupled to matter in 3+1 dimensions

2020 ◽  
Vol 102 (2) ◽  
Author(s):  
R. V. Maluf ◽  
F. A. G. Silveira ◽  
J. E. G. Silva ◽  
C. A. S. Almeida
Keyword(s):  

1992 ◽  
Vol 99 (1-3) ◽  
pp. 79-113 ◽  
Author(s):  
Mark D. Haiman
Keyword(s):  


Author(s):  
Christopher R. A. Gilmour

AbstractWe show that there is an adjoint dual equivalence between realcompact Alexandroff spaces and the Alexandroff σ-frames. This gives a corresponding adjoint duality for realcompact Tychonoff spaces. Consequently we characterize lattice theoretically the cozero-sets of a topological space.



1984 ◽  
Vol 36 (6) ◽  
pp. 1113-1118 ◽  
Author(s):  
B. Banaschewski

It is an old conjecture by P. Bankston that the category CompHaus of compact Hausdorff spaces and their continuous maps is not dually equivalent to any elementary P-class of finitary algebras (taken as a category with all homomorphisms between its members as maps), where elementary means defined by first order axioms, and a P-class is one closed under arbitrary (cartesian) products. One motivation for this conjecture is the fact that such a dual equivalence would make ultracopowers of compact Hausdorff spaces correspond to ultrapowers of finitary algebras, and one might expect this to have contradictory consequences.As a possible step towards proving his conjecture, Bankston [2] showed that no elementary SP-class of finitary algebras can be dually equivalent to CompHaus. However, it was subsequently proved in [1] that the same holds for any SP-class of finitary algebras, using an argument independent of ultrapowers.





2001 ◽  
Vol 510 (1-4) ◽  
pp. 329-334 ◽  
Author(s):  
D. Bazeia ◽  
A. Ilha ◽  
J.R.S. Nascimento ◽  
R.F. Ribeiro ◽  
C. Wotzasek


10.37236/4384 ◽  
2014 ◽  
Vol 21 (4) ◽  
Author(s):  
Sara Billey ◽  
Zachary Hamaker ◽  
Austin Roberts ◽  
Benjamin Young

We define an analog of David Little’s algorithm for reduced words in type B, and investigate its main properties. In particular, we show that our algorithm preserves the recording tableau of Kraśkiewicz insertion, and that it provides a bijective realization of the Type B transition equations in Schubert calculus. Many other aspects of type A theory carry over to this new setting. Our primary tool is a shifted version of the dual equivalence graphs defined by Assaf and further developed by Roberts. We provide an axiomatic characterization of shifted dual equivalence graphs, and use them to prove a structure theorem for the graph of Type B Coxeter-Knuth relations. 



10.37236/6732 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Austin Roberts

This paper uses the theory of dual equivalence graphs to give explicit Schur expansions for several families of symmetric functions. We begin by giving a combinatorial definition of the modified Macdonald polynomials and modified Hall-Littlewood polynomials indexed by any diagram $\delta \subset {\mathbb Z} \times {\mathbb Z}$, written as $\widetilde H_{\delta}(X;q,t)$ and $\widetilde H_{\delta}(X;0,t)$, respectively. We then give an explicit Schur expansion of $\widetilde H_{\delta}(X;0,t)$ as a sum over a subset of the Yamanouchi words, as opposed to the expansion using the charge statistic given in 1978 by Lascoux and Schüztenberger. We further define the symmetric function $R_{\gamma,\delta}(X)$ as a refinement of $\widetilde H_{\delta}(X;0,t)$ and similarly describe its Schur expansion. We then analyze $R_{\gamma,\delta}(X)$ to determine the leading term of its Schur expansion. We also provide a conjecture towards the Schur expansion of $\widetilde H_{\delta}(X;q,t)$. To gain these results, we use a construction from the 2007 work of Sami Assaf to associate each Macdonald polynomial with a signed colored graph $\mathcal{H}_\delta$. In the case where a subgraph of $\mathcal{H}_\delta$ is a dual equivalence graph, we provide the Schur expansion of its associated symmetric function, yielding several corollaries.



10.29007/dgb4 ◽  
2018 ◽  
Author(s):  
Guram Bezhanishvili ◽  
Vincenzo Marra ◽  
Patrick J. Morandi ◽  
Bruce Olberding

For a commutative ring R, we introduce the notion of a Specker R-algebra and show that Specker R-algebras are Boolean powers of R. For an indecomposable ring R, this yields an equivalence between the category of Specker R-algebras and the category of Boolean algebras. Together with Stone duality this produces a dual equivalence between the category of Specker R-algebras and the category of Stone spaces.



Sign in / Sign up

Export Citation Format

Share Document