scholarly journals Galactic bulge millisecond pulsars shining in x rays: A γ -ray perspective

2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Joanna Berteaud ◽  
Francesca Calore ◽  
Maïca Clavel ◽  
Pasquale Dario Serpico ◽  
Guillaume Dubus ◽  
...  
2021 ◽  
Vol 2021 (07) ◽  
pp. E01
Author(s):  
Harrison Ploeg ◽  
Chris Gordon ◽  
Roland Crocker ◽  
Oscar Macias

Nature ◽  
1983 ◽  
Vol 301 (5897) ◽  
pp. 222-223 ◽  
Author(s):  
A. C. Fabian ◽  
J. E. Pringle ◽  
F. Verbunt ◽  
R. A. Wade

2016 ◽  
Vol 466 (2) ◽  
pp. 1757-1763 ◽  
Author(s):  
A. Karpova ◽  
P. Shternin ◽  
D. Zyuzin ◽  
A. Danilenko ◽  
Yu. Shibanov
Keyword(s):  
X Rays ◽  

1992 ◽  
Vol 128 ◽  
pp. 207-208
Author(s):  
S. V. Bogovalov ◽  
YU. D. Kotov

AbstractSuper-hard γ-ray radiation spectra have been calculated. This radiation is generated near the velocity-of-light cylinder through the process of inverse-Compton scattering of relativistic electrons by thermal photons radiated by a neutron star. These calculations have been compared with observations of the Crab and Vela pulsars at 1000-GeV γ-ray energies. A correlation between γ-ray flares and those in soft (Ex ≃ lkeV) X-rays are predicted.


1994 ◽  
Vol 142 ◽  
pp. 707-711
Author(s):  
H. Aurass ◽  
A. Hofmann ◽  
E. Rieger

AbstractVector magnetogram data and Hα pictures together with data published by Chupp et al. lead us to conjecture that in the presented case a contact between the rising two-ribbon flare current sheet and a coronal loop connecting two nearby plage regions initiates efficient high-energy γ-ray emission.Subject headings: Sun: corona — Sun: flares — Sun: X-rays, gamma rays


2020 ◽  
Vol 496 (2) ◽  
pp. 2213-2229 ◽  
Author(s):  
F D’Ammando

ABSTRACT We report the analysis of all Swift observations available up to 2019 April of γ-ray-emitting narrow-line Seyfert 1 galaxies (NLSy1). The distribution of X-ray luminosities (and fluxes) indicates that the jet radiation significantly contributes to their X-ray emission, with Doppler boosting making values higher than other radio-loud NLSy1. The 0.3–10 keV photon indices are on average harder with respect to radio-quiet and radio-loud NLSy1, confirming a dominant jet contribution in X-rays. However, the lower variability amplitude with respect to blazars and the softening of the spectrum in some periods suggests that also the corona radiation contributes to the X-ray emission. In optical and ultraviolet (UV) significant flux changes have been observed on daily, weekly, and monthly time-scale, providing a clear indication of the significant contribution of the jet radiation in this part of spectrum. A strong correlation between X-ray, UV, and optical emission and simultaneous flux variations have been observed in 1H 0323+342, SBS 0846+513, PMN J0948+0022 as expected in case the jet radiation is the dominant mechanism. Correlated multiband variability favours the jet-dominated scenario also in FBQS J1644+2619 and PKS 2004−447. The summed X-ray Telescope spectra of 1H 0323+342, SBS 0846+513, PMN J0948+0022, and FBQS J1644+2619 are well fitted by a broken power law with a break around 2 keV. The spectrum above 2 keV is dominated by the non-thermal emission from a beamed relativistic jet, as suggested by the hard photon index. A Seyfert-like feature like the soft X-ray excess has been observed below 2 keV, making these γ-ray-emitting NLSy1 different from typical blazars.


Proceedings ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 9
Author(s):  
Ka-Wah Wong ◽  
Rodrigo S. Nemmen ◽  
Jimmy A. Irwin ◽  
Dacheng Lin

The nearby M87 hosts an exceptional relativistic jet. It has been regularly monitored in radio to TeV bands, but little has been done in hard X-rays ≳10 keV. For the first time, we have successfully detected hard X-rays up to 40 keV from its X-ray core with joint Chandra and NuSTAR observations, providing important insights to the X-ray origins: from the unresolved jet or the accretion flow. We found that the hard X-ray emission is significantly lower than that predicted by synchrotron self-Compton models introduced to explain very-high-energy γ -ray emission above a GeV. We discuss recent models to understand these high energy emission processes.


2019 ◽  
Vol 627 ◽  
pp. A72 ◽  
Author(s):  
G. Ghisellini ◽  
M. Perri ◽  
L. Costamante ◽  
G. Tagliaferri ◽  
T. Sbarrato ◽  
...  

We observed three blazars at z >  2 with the NuSTAR satellite. These were detected in the γ-rays by Fermi/LAT and in the soft X-rays, but have not yet been observed above 10 keV. The flux and slope of their X-ray continuum, together with Fermi/LAT data allows us to estimate their total electromagnetic output and peak frequency. For some of them we were able to study the source in different states, and investigate the main cause of the different observed spectral energy distribution. We then collected all blazars at redshifts greater than 2 observed by NuSTAR, and confirm that these hard and luminous X-ray blazars are among the most powerful persistent sources in the Universe. We confirm the relation between the jet power and the disk luminosity, extending it at the high-energy end.


Sign in / Sign up

Export Citation Format

Share Document