scholarly journals Application of the Hilbert-Huang transform for analyzing standing-accretion-shock-instability induced gravitational waves in a core-collapse supernova

2021 ◽  
Vol 104 (8) ◽  
Author(s):  
M. Takeda ◽  
Y. Hiranuma ◽  
N. Kanda ◽  
K. Kotake ◽  
T. Kuroda ◽  
...  
2011 ◽  
Vol 7 (S279) ◽  
pp. 134-137
Author(s):  
Thierry Foglizzo ◽  
Frédéric Masset ◽  
Jérôme Guilet ◽  
Gilles Durand

AbstractMassive stars end their life with the gravitational collapse of their core and the formation of a neutron star. Their explosion as a supernova depends on the revival of a spherical accretion shock, located in the inner 200km and stalled during a few hundred milliseconds. Numerical simulations suggest that the large scale asymmetry of the neutrino-driven explosion is induced by a hydrodynamical instability named SASI. Its non radial character is able to influence the kick and the spin of the resulting neutron star. The SWASI experiment is a simple shallow water analog of SASI, where the role of acoustic waves and shocks is played by surface waves and hydraulic jumps. Distances in the experiment are scaled down by a factor one million, and time is slower by a factor one hundred. This experiment is designed to illustrate the asymmetric nature of core-collapse supernova.


2015 ◽  
Vol 811 (2) ◽  
pp. 86 ◽  
Author(s):  
Takaaki Yokozawa ◽  
Mitsuhiro Asano ◽  
Tsubasa Kayano ◽  
Yudai Suwa ◽  
Nobuyuki Kanda ◽  
...  

2020 ◽  
Vol 493 (3) ◽  
pp. 3496-3512 ◽  
Author(s):  
Ernazar Abdikamalov ◽  
Thierry Foglizzo

ABSTRACT The convection that takes place in the innermost shells of massive stars plays an important role in the formation of core-collapse supernova explosions. Upon encountering the supernova shock, additional turbulence is generated, amplifying the explosion. In this work, we study how the convective perturbations evolve during the stellar collapse. Our main aim is to establish their physical properties right before they reach the supernova shock. To this end, we solve the linearized hydrodynamics equations perturbed on a stationary background flow. The latter is approximated by the spherical transonic Bondi accretion, while the convective perturbations are modelled as a combination of entropy and vorticity waves. We follow their evolution from large radii, where convective shells are initially located, down to small radii, where they are expected to encounter the accretion shock above the proto-neutron star. Considering typical vorticity perturbations with a Mach number ∼0.1 and entropy perturbations with magnitude ∼0.05kb/baryon, we find that the advection of these perturbations down to the shock generates acoustic waves with a relative amplitude $\delta {\rm p}/\gamma {\rm p} \lesssim 10{{\ \rm per\ cent}}$, in agreement with published numerical simulations. The velocity perturbations consist of contributions from acoustic and vorticity waves with values reaching ${\sim}10{{\ \rm per\ cent}}$ of the sound speed ahead of the shock. The perturbation amplitudes decrease with increasing ℓ and initial radii of the convective shells.


2008 ◽  
Vol 112 (4) ◽  
pp. 042018 ◽  
Author(s):  
N Ohnishi ◽  
W Iwakami ◽  
K Kotake ◽  
S Yamada ◽  
S Fujioka ◽  
...  

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
S. Aiello ◽  
A. Albert ◽  
S. Alves Garre ◽  
Z. Aly ◽  
A. Ambrosone ◽  
...  

AbstractThe KM3NeT research infrastructure is under construction in the Mediterranean Sea. It consists of two water Cherenkov neutrino detectors, ARCA and ORCA, aimed at neutrino astrophysics and oscillation research, respectively. Instrumenting a large volume of sea water with $$\sim {6200}$$ ∼ 6200 optical modules comprising a total of $$\sim {200{,}000}$$ ∼ 200 , 000 photomultiplier tubes, KM3NeT will achieve sensitivity to $$\sim {10} \ \mathrm{MeV}$$ ∼ 10 MeV neutrinos from Galactic and near-Galactic core-collapse supernovae through the observation of coincident hits in photomultipliers above the background. In this paper, the sensitivity of KM3NeT to a supernova explosion is estimated from detailed analyses of background data from the first KM3NeT detection units and simulations of the neutrino signal. The KM3NeT observational horizon (for a $$5\,\sigma $$ 5 σ discovery) covers essentially the Milky-Way and for the most optimistic model, extends to the Small Magellanic Cloud ($$\sim {60} \ \mathrm{kpc}$$ ∼ 60 kpc ). Detailed studies of the time profile of the neutrino signal allow assessment of the KM3NeT capability to determine the arrival time of the neutrino burst with a few milliseconds precision for sources up to 5–8 kpc away, and detecting the peculiar signature of the standing accretion shock instability if the core-collapse supernova explosion happens closer than 3–5 kpc, depending on the progenitor mass. KM3NeT’s capability to measure the neutrino flux spectral parameters is also presented.


2020 ◽  
Vol 500 (1) ◽  
pp. 696-717 ◽  
Author(s):  
Hiroki Nagakura ◽  
Adam Burrows ◽  
David Vartanyan ◽  
David Radice

ABSTRACT Based on our recent three-dimensional core-collapse supernova (CCSN) simulations including both exploding and non-exploding models, we study the detailed neutrino signals in representative terrestrial neutrino observatories, namely Super-Kamiokande (Hyper-Kamiokande), DUNE, JUNO, and IceCube. We find that the physical origin of difference in the neutrino signals between 1D and 3D is mainly proto-neutron-star convection. We study the temporal and angular variations of the neutrino signals and discuss the detectability of the time variations driven by the spiral standing accretion shock instability (spiral SASI) when it emerges for non-exploding models. In addition, we determine that there can be a large angular asymmetry in the event rate (${\gtrsim} 50 {{\ \rm per\ cent}}$), but the time-integrated signal has a relatively modest asymmetry (${\lesssim} 20 {{\ \rm per\ cent}}$). Both features are associated with the lepton-number emission self-sustained asymmetry and the spiral SASI. Moreover, our analysis suggests that there is an interesting correlation between the total neutrino energy (TONE) and the cumulative number of neutrino events in each detector, a correlation that can facilitate data analyses of real observations. We demonstrate the retrieval of neutrino energy spectra for all flavours of neutrino by applying a novel spectrum reconstruction technique to the data from multiple detectors. We find that this new method is capable of estimating the TONE within the error of ∼20 per cent if the distance to the CCSN is ≲6 kpc.


2012 ◽  
Vol 86 (4) ◽  
Author(s):  
J. Logue ◽  
C. D. Ott ◽  
I. S. Heng ◽  
P. Kalmus ◽  
J. H. C. Scargill

Sign in / Sign up

Export Citation Format

Share Document