scholarly journals New physics motivated by the low energy approach to electric charge quantization

1995 ◽  
Vol 51 (7) ◽  
pp. 3849-3854
Author(s):  
H. Lew ◽  
R. R. Volkas
1991 ◽  
Vol 06 (07) ◽  
pp. 527-529 ◽  
Author(s):  
ROBERT FOOT

Electric charge quantization is re-examined in the standard model.


1990 ◽  
Vol 05 (24) ◽  
pp. 1947-1949 ◽  
Author(s):  
ROBERT FOOT

In extended gauge models with gauge group G, electric charge quantization is not always an automatic consequence of the consistency of the theory. Exotic fermions which have SU (3) ⊗ SU (2) L ⊗ U (1) invariant mass terms can provide a simple method for preserving the charge quantization feature of the standard model. This procedure is applied to the segregated isospin model.This approach indicates that precision measurements of the τ-lepton life-time and rare flavor-changing neutral processes may provide the first indications of new physics beyond the standard model.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Martin Bauer ◽  
Matthias Neubert ◽  
Sophie Renner ◽  
Marvin Schnubel ◽  
Andrea Thamm

Abstract Axions and axion-like particles (ALPs) are well-motivated low-energy relics of high-energy extensions of the Standard Model, which interact with the known particles through higher-dimensional operators suppressed by the mass scale Λ of the new-physics sector. Starting from the most general dimension-5 interactions, we discuss in detail the evolution of the ALP couplings from the new-physics scale to energies at and below the scale of electroweak symmetry breaking. We derive the relevant anomalous dimensions at two-loop order in gauge couplings and one-loop order in Yukawa interactions, carefully considering the treatment of a redundant operator involving an ALP coupling to the Higgs current. We account for one-loop (and partially two-loop) matching contributions at the weak scale, including in particular flavor-changing effects. The relations between different equivalent forms of the effective Lagrangian are discussed in detail. We also construct the effective chiral Lagrangian for an ALP interacting with photons and light pseudoscalar mesons, pointing out important differences with the corresponding Lagrangian for the QCD axion.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 191
Author(s):  
Alexander Bednyakov ◽  
Alfiia Mukhaeva

Flavour anomalies have attracted a lot of attention over recent years as they provide unique hints for possible New Physics. Here, we consider a supersymmetric (SUSY) extension of the Standard Model (SM) with an additional anomaly-free gauge U(1) group. The key feature of our model is the particular choice of non-universal charges to the gauge boson Z′, which not only allows a relaxation of the flavour discrepancies but, contrary to previous studies, can reproduce the SM mixing matrices both in the quark and lepton sectors. We pay special attention to the latter and explicitly enumerate all parameters relevant for our calculation in the low-energy effective theory. We find regions in the parameter space that satisfy experimental constraints on meson mixing and LHC Z′ searches and can alleviate the flavour anomalies. In addition, we also discuss the predictions for lepton-flavour violating decays B+→K+μτ and B+→K+eτ.


2019 ◽  
Vol 79 (12) ◽  
Author(s):  
G. Angloher ◽  
F. Ardellier-Desages ◽  
A. Bento ◽  
L. Canonica ◽  
A. Erhart ◽  
...  

AbstractCoherent elastic neutrino–nucleus scattering ($$\hbox {CE}\nu \hbox {NS}$$CEνNS) offers a unique way to study neutrino properties and to search for new physics beyond the Standard Model. Nuclear reactors are promising sources to explore this process at low energies since they deliver large fluxes of anti-neutrinos with typical energies of a few MeV. In this paper, a new-generation experiment to study $$\hbox {CE}\nu \hbox {NS}$$CEνNS is described. The NUCLEUS experiment will use cryogenic detectors which feature an unprecedentedly low-energy threshold and a time response fast enough to be operated under above-ground conditions. Both sensitivity to low-energy nuclear recoils and a high event rate tolerance are stringent requirements to measuring $$\hbox {CE}\nu \hbox {NS}$$CEνNS of reactor anti-neutrinos. A new experimental site, the Very-Near-Site (VNS), at the Chooz nuclear power plant in France is described. The VNS is located between the two 4.25 $$\hbox {GW}_{\mathrm {th}}$$GWth reactor cores and matches the requirements of NUCLEUS. First results of on-site measurements of neutron and muon backgrounds, the expected dominant background contributions, are given. In this paper a preliminary experimental set-up with dedicated active and passive background reduction techniques and first background estimations are presented. Furthermore, the feasibility to operate the detectors in coincidence with an active muon veto at shallow overburden is studied. The paper concludes with a sensitivity study pointing out the physics potential of NUCLEUS at the Chooz nuclear power plant.


2018 ◽  
Vol 33 (09) ◽  
pp. 1850053
Author(s):  
M. Shifman ◽  
A. Yung

Non-Abelian strings are considered in non-supersymmetric theories with fermions in various appropriate representations of the gauge group U[Formula: see text]. We derive the electric charge quantization conditions and the index theorems counting fermion zero modes in the string background both for the left-handed and right-handed fermions. In both cases we observe a non-trivial [Formula: see text] dependence.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Tong Li ◽  
Xiao-Dong Ma ◽  
Michael A. Schmidt

Abstract In this work we investigate the implication of low-energy precision measurements on the quark-lepton charged currents in general neutrino interactions with sterile neutrinos in effective field theories. The physics in low-energy measurements is described by the low-energy effective field theory extended with sterile neutrinos (LNEFT) defined below the electroweak scale. We also take into account renormalization group running and match the LNEFT onto the Standard Model (SM) effective field theory with sterile neutrinos (SMNEFT) to constrain new physics (NP) above the electroweak scale. The most sensitive low-energy probes are from leptonic decays of pseudoscalar mesons and hadronic tau lepton decays in terms of precise decay branching fractions, the lepton flavor universality and the Cabibbo-Kobayashi-Maskawa (CKM) unitarity. We also consider other constraints including nuclear beta decay. The constraints on charged current operators are generally stronger than the ones for quark-neutrino neutral current operators. We find that the most stringent bounds on the NP scale of lepton-number-conserving and lepton- number-violating operators in SMNEFT are 74 (110) TeV and 9.8 (13) TeV, respectively, for the operators with down (strange) quark.


Sign in / Sign up

Export Citation Format

Share Document