scholarly journals Solitons in a baby-Skyrme model with invariance under area-preserving diffeomorphisms

1997 ◽  
Vol 55 (12) ◽  
pp. 7731-7738 ◽  
Author(s):  
T. Gisiger ◽  
M. B. Paranjape
Keyword(s):  
2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Sven Bjarke Gudnason ◽  
Marco Barsanti ◽  
Stefano Bolognesi

Abstract We consider the baby-Skyrme model in the regime close to the so-called restricted baby-Skyrme model, which is a BPS model with area-preserving diffeomorphism invariance. The perturbation takes the form of the standard kinetic Dirichlet term with a small coefficient ϵ. Classical solutions of this model, to leading order in ϵ, are called restricted harmonic maps. In the BPS limit (ϵ → 0) of the model with the potential being the standard pion-mass term, the solution with unit topological charge is a compacton. Using analytical and numerical arguments we obtain solutions to the problem for topological sectors greater than one. We develop a perturbative scheme in ϵ with which we can calculate the corrections to the BPS mass. The leading order ($$ \mathcal{O}\left({\upepsilon}^1\right) $$ O ϵ 1 ) corrections show that the baby Skyrmion with topological charge two is energetically preferred. The binding energy requires us to go to the third order in ϵ to capture the relevant terms in perturbation theory, however, the binding energy contributes to the total energy at order ϵ2. We find that the baby Skyrmions — in the near-BPS regime — are compactons of topological charge two, that touch each other on their periphery at a single point and with orientations in the attractive channel.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Sven Bjarke Gudnason ◽  
Marco Barsanti ◽  
Stefano Bolognesi

Abstract We consider the baby Skyrme model in a physically motivated limit of reaching the restricted or BPS baby Skyrme model, which is a model that enjoys area-preserving diffeomorphism invariance. The perturbation consists of the kinetic Dirichlet term with a small coefficient ϵ as well as the standard pion mass term, with coefficient $$ \upepsilon {m}_1^2 $$ ϵ m 1 2 . The pions remain lighter than the soliton for any ϵ and therefore the model is physically acceptable, even in the ϵ → 0 limit. The version of the BPS baby Skyrme model we use has BPS solutions with Gaussian tails. We perform full numerical computations in the ϵ → 0 limit and even reach the strict ϵ = 0 case, finding new nontrivial BPS solutions, for which we do not yet know the analytic form.


2021 ◽  
Vol 280 (8) ◽  
pp. 108931
Author(s):  
Laiyuan Gao ◽  
Shengliang Pan ◽  
Dong-Ho Tsai

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Ł.T. Stępień
Keyword(s):  

Abstract We show that the BPS Skyrme model, as well as its (2+1) dimensional baby version (restricted), can be coupled with an impurity in the BPS preserving manner. The corresponding Bogomolny equations are derived.


Author(s):  
Stavros N. Leloudas ◽  
Giorgos A. Strofylas ◽  
Ioannis K. Nikolos

Given the importance of structural integrity of aerodynamic shapes, the necessity of including a cross-sectional area equality constraint among other geometrical and aerodynamic ones arises during the optimization process of an airfoil. In this work an airfoil optimization scheme is presented, based on Area-Preserving Free-Form Deformation (AP FFD), which serves as an alternative technique for the fulfillment of a cross-sectional area equality constraint. The AP FFD is based on the idea of solving an area correction problem, where a minimum possible offset is applied on all free-to-move control points of the FFD lattice, subject to the area preservation constraint. Due to the linearity of the area constraint in each axis, the extraction of an inexpensive closed-form solution to the area preservation problem is possible by using Lagrange Multipliers. A parallel Differential Evolution (DE) algorithm serves as the optimizer, assisted by two Artificial Neural Networks as surrogates. The use of multiple surrogate models, in conjunction with the inexpensive solution to the area correction problem, render the optimization process time efficient. The application of the proposed methodology for wind turbine airfoil optimization demonstrates its applicability and effectiveness.


1988 ◽  
Vol 37 (7) ◽  
pp. 1912-1922 ◽  
Author(s):  
W. F. Kao ◽  
Howard J. Schnitzer
Keyword(s):  

1990 ◽  
Vol 7 (12) ◽  
pp. 2361-2365 ◽  
Author(s):  
J S Dowker ◽  
Wei Mo-zheng

1991 ◽  
Vol 65 (3-4) ◽  
pp. 617-643 ◽  
Author(s):  
Alessandra Celletti ◽  
Luigi Chierchia

Sign in / Sign up

Export Citation Format

Share Document