scholarly journals Near-BPS baby Skyrmions

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Sven Bjarke Gudnason ◽  
Marco Barsanti ◽  
Stefano Bolognesi

Abstract We consider the baby-Skyrme model in the regime close to the so-called restricted baby-Skyrme model, which is a BPS model with area-preserving diffeomorphism invariance. The perturbation takes the form of the standard kinetic Dirichlet term with a small coefficient ϵ. Classical solutions of this model, to leading order in ϵ, are called restricted harmonic maps. In the BPS limit (ϵ → 0) of the model with the potential being the standard pion-mass term, the solution with unit topological charge is a compacton. Using analytical and numerical arguments we obtain solutions to the problem for topological sectors greater than one. We develop a perturbative scheme in ϵ with which we can calculate the corrections to the BPS mass. The leading order ($$ \mathcal{O}\left({\upepsilon}^1\right) $$ O ϵ 1 ) corrections show that the baby Skyrmion with topological charge two is energetically preferred. The binding energy requires us to go to the third order in ϵ to capture the relevant terms in perturbation theory, however, the binding energy contributes to the total energy at order ϵ2. We find that the baby Skyrmions — in the near-BPS regime — are compactons of topological charge two, that touch each other on their periphery at a single point and with orientations in the attractive channel.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Sven Bjarke Gudnason ◽  
Marco Barsanti ◽  
Stefano Bolognesi

Abstract We consider the baby Skyrme model in a physically motivated limit of reaching the restricted or BPS baby Skyrme model, which is a model that enjoys area-preserving diffeomorphism invariance. The perturbation consists of the kinetic Dirichlet term with a small coefficient ϵ as well as the standard pion mass term, with coefficient $$ \upepsilon {m}_1^2 $$ ϵ m 1 2 . The pions remain lighter than the soliton for any ϵ and therefore the model is physically acceptable, even in the ϵ → 0 limit. The version of the BPS baby Skyrme model we use has BPS solutions with Gaussian tails. We perform full numerical computations in the ϵ → 0 limit and even reach the strict ϵ = 0 case, finding new nontrivial BPS solutions, for which we do not yet know the analytic form.


1999 ◽  
Vol 14 (14) ◽  
pp. 893-901 ◽  
Author(s):  
Y. BRIHAYE ◽  
C. GABRIEL

A nonlinear sigma model mimicking the Skyrme model on S3 is proposed and a family of classical solutions to the equations are constructed numerically. The solutions terminate into catastrophic-like spikes at critical values of the Skyrme coupling constant and, when this constant is zero, they coincide with the series of harmonic maps on S3 constructed some years ago by P. Bizon.


Author(s):  
Steffen Krusch

The Skyrme model is a classical field theory modelling the strong interaction between atomic nuclei. It has to be quantized in order to compare it to nuclear physics. When the Skyrme model is semi-classically quantized it is important to take the Finkelstein–Rubinstein constraints into account. Recently, a simple formula has been derived to calculate the constraints for Skyrmions which are well approximated by rational maps. However, if a pion mass term is included in the model, Skyrmions of sufficiently large baryon number are no longer well approximated by the rational map ansatz. This paper addresses the question how to calculate Finkelstein–Rubinstein constraints for Skyrme configurations which are only known numerically.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yujie Huang ◽  
Qiujin Zhu

This paper theoretically investigates interactions between a template and functional monomer required for synthesizing an efficient molecularly imprinted polymer (MIP). We employed density functional theory (DFT) to compute geometry, single-point energy, and binding energy (ΔE) of an MIP system, where spermidine (SPD) and methacrylic acid (MAA) were selected as template and functional monomer, respectively. The geometry was calculated by using B3LYP method with 6-31+(d) basis set. Furthermore, 6-311++(d, p) basis set was used to compute the single-point energy of the above geometry. The optimized geometries at different template to functional monomer molar ratios, mode of bonding between template and functional monomer, changes in charge on natural bond orbital (NBO), and binding energy were analyzed. The simulation results show that SPD and MAA form a stable complex via hydrogen bonding. At 1 : 5 SPD to MAA ratio, the binding energy is minimum, while the amount of transferred charge between the molecules is maximum; SPD and MAA form a stable complex at 1 : 5 molar ratio through six hydrogen bonds. Optimizing structure of template-functional monomer complex, through computational modeling prior synthesis, significantly contributes towards choosing a suitable pair of template-functional monomer that yields an efficient MIP with high specificity and selectivity.


Author(s):  
HIROSHI ITOYAMA ◽  
NOBUHITO MARU

We consider an [Formula: see text] supersymmetric U(N) gauge theory with an adjoint chiral multiplet. By developing a self-consistent Hartree-Fock approximation to the leading order which is reminiscent of that of the BCS/NJL in the superconductivity/chiral symmetry, we show that the [Formula: see text] supersymmetry is spontaneously broken, giving a mixed Majorana-Dirac mass term for gaugino due to the nonvanishing D-term VEV and F-term one induced by D-term.


Soil Research ◽  
2007 ◽  
Vol 45 (3) ◽  
pp. 182 ◽  
Author(s):  
M. Li ◽  
Y. L. Hou ◽  
B. Zhu

The understanding of phosphorus (P) sorption and desorption by soil is important for better managing soil P source and relieving water eutrophication. In this study, sorption–desorption behaviour of P was investigated in purple soils, collected from 3 kinds of purple parent materials with different kinds of land cover, in the upper reaches of Yangtze River, China, using a batch equilibrium technique. Results showed that most of the farmed purple soils had P sorption capacity (PSC) values ranging from 476 to 685 mg P/kg, while higher PSC values were observed in the soils from forestland and paddy field. A single-point P sorption index (PSI) was found to be significantly correlated with PSC (R2 = 0.94, P < 0.001), suggesting its use in estimating PSC across different types of purple soils. The PSC of purple soils was positively and strongly related to the contents of amorphous Fe and Al oxides (r = 0.73, P < 0.001), clay (r = 0.55, P < 0.01), and organic matter (r = 0.50, P < 0.05). Furthermore, the constant relating to binding strength was positively correlated with the content of amorphous Fe and Al oxides (r = 0.66, P < 0.01), but negatively correlated with labile Ca (r = –0.43, P < 0.05) and soil pH (r = –0.53, P < 0.01). Some acidic purple soils with high binding energy featured a power desorption curve, suggesting that P release risk can be accelerated once the P sorbed exceeds a certain threshold. Other soils with low binding energy demonstrated a linear desorption curve. The P desorption percentage was significantly correlated with soil test P (r = 0.78, P < 0.01) and the degree of P saturation (r = 0.82, P < 0.01), but negatively correlated with PSC (r = –0.66, P < 0.01).


2018 ◽  
Vol 33 (22) ◽  
pp. 1850127 ◽  
Author(s):  
F. R. Klinkhamer ◽  
J. M. Queiruga

We discuss a special type of Skyrmion spacetime-defect solution, which has a positive energy density of the matter fields but a vanishing asymptotic gravitational mass. With a mass term for the matter field added to the action (corresponding to massive “pions” in the Skyrme model), this particular soliton-type solution has no long-range fields and can appropriately be called a “stealth defect”.


2017 ◽  
Vol 95 (1) ◽  
Author(s):  
Maarten Golterman ◽  
Yigal Shamir
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document