scholarly journals Absence of shadowing in Drell-Yan production at finite transverse momentum exchange

2002 ◽  
Vol 66 (11) ◽  
Author(s):  
Stéphane Peigné
1973 ◽  
Vol 34 (C1) ◽  
pp. C1-385-C1-399 ◽  
Author(s):  
J. D. BJORKEN

Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 73-75
Author(s):  
Susumu Hara

Professor Susumu Hara is based at the Department of Aerospace Engineering, Nagoya University in Japan explains that when the Mars rover Opportunity was set to land on that planet in the first weeks of 2004, onlookers held their breath as it dropped from orbit and hurtled toward the red surface. 'Any failure in the calculations or landing systems would mean a harder than expected impact,' he highlights. 'The impacts sustained by a rover such as Opportunity can derail a mission before it even starts, damaging cargo or vital systems required to complete the mission.' Impacts occur during landing but also as the craft enters the atmosphere, when it makes sudden moves, while it is on surface or when debris strikes it. 'Therefore, a system and materials to protect a craft are vital,' outlines Hara. 'Surprisingly, the solutions to this problem are not sophisticated. In fact, most craft still employ devices resembling automobile bumpers, which absorb the energy from an impact by crumpling under the force of said impact.' Unfortunately, these cannot be reused, even during testing phases a new prototype is required after every single test run. Recent missions also employed techniques like airbags or sky cranes. While successful they too have drawbacks. 'Airbags create huge rebounds which can jostle the craft and the contents inside while sky cranes are extremely costly to develop,' Hara says. For this reason, he is dedicated to designing a new highly reliable and cost-effective shock control mechanism.


Author(s):  
Hiroki OKACHI ◽  
Tomohito J. YAMADA ◽  
Yasunori WATANABE
Keyword(s):  

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract The results of a search for new phenomena in final states with b-jets and missing transverse momentum using 139 fb−1 of proton-proton data collected at a centre-of-mass energy $$ \sqrt{s} $$ s = 13 TeV by the ATLAS detector at the LHC are reported. The analysis targets final states produced by the decay of a pair-produced supersymmetric bottom squark into a bottom quark and a stable neutralino. The analysis also seeks evidence for models of pair production of dark matter particles produced through the decay of a generic scalar or pseudoscalar mediator state in association with a pair of bottom quarks, and models of pair production of scalar third-generation down-type leptoquarks. No significant excess of events over the Standard Model background expectation is observed in any of the signal regions considered by the analysis. Bottom squark masses below 1270 GeV are excluded at 95% confidence level if the neutralino is massless. In the case of nearly mass-degenerate bottom squarks and neutralinos, the use of dedicated secondary-vertex identification techniques permits the exclusion of bottom squarks with masses up to 660 GeV for mass splittings between the squark and the neutralino of 10 GeV. These limits extend substantially beyond the regions of parameter space excluded by similar ATLAS searches performed previously.


Sign in / Sign up

Export Citation Format

Share Document