transverse momentum distribution
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 18)

H-INDEX

28
(FIVE YEARS 2)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 31
Author(s):  
Li-Li Li ◽  
Fu-Hu Liu ◽  
Muhammad Waqas ◽  
Muhammad Ajaz

We analyzed the transverse momentum spectra of positively and negatively charged pions (π+ and π−), positively and negatively charged kaons (K+ and K−), protons and antiprotons (p and p¯), as well as ϕ produced in mid-(pseudo)rapidity region in central nucleus–nucleus (AA) collisions over a center-of-mass energy range from 2.16 to 2760 GeV per nucleon pair. The transverse momentum of the considered particle is regarded as the joint contribution of two participant partons which obey the modified Tsallis-like transverse momentum distribution and have random azimuths in superposition. The calculation of transverse momentum distribution of particles is performed by the Monte Carlo method and compared with the experimental data measured by international collaborations. The excitation functions of effective temperature and other parameters are obtained in the considered energy range. With the increase of collision energy, the effective temperature parameter increases quickly and then slowly. The boundary appears at around 5 GeV, which means the change of reaction mechanism and/or generated matter.


Author(s):  
Wafaa Saleh ◽  
Asmaa G. Shalaby

The transverse momentum distribution of charged particles formed in Au–Au collisions at Beam Energy Scan (BES) ([Formula: see text][Formula: see text]GeV) is investigated. In addition, [Formula: see text] spectra of [Formula: see text] particle at [Formula: see text][Formula: see text]GeV were examined. Tsallis distribution is used to extract the temperature, volume and the entropic index from the experimental results at mid-rapidity and zero chemical potential. We measure some particle ratios like [Formula: see text] and [Formula: see text] which are puzzling horn in the experiment and in the thermal model. We conclude that the horn vanished when we used Tsallis distribution, but this does not confirm a solution to the puzzle, which is primarily visible in the experimental results.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
B. Blok

AbstractWe study the effects of adding the Coulomb interactions to the harmonic oscillator (HO) approximation of the heavy parton propagating through the quark–gluon plasma (the extension to QCD of the Molliere theory). We explicitly find the expression for the transverse momentum distribution of the gluon radiation of the heavy quark propagating in the quark gluon plasma in the framework of the Moliere theory, taking into account the BDMPSZ radiation in the HO approximation, and the Coulomb logarithms described by the additional logarithmic terms in the effective potential. We show that these Coulomb logarithms significantly influence the HO distribution, derived in the BDMPSZ works, especially for the small transverse momenta, filling the dead cone, and reducing the dead cone suppression of the heavy quark radiation (dead cone effect). In addition we study the effect of the phase space constraints on the heavy quark energy loss, and argue that taking into account of both the phase space constraints and of the Coulomb gluons reduces the dependence of the heavy quark energy loss on its mass in the HO approximation.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Herschel A. Chawdhry ◽  
Michał Czakon ◽  
Alexander Mitov ◽  
Rene Poncelet

Abstract We calculate the NNLO QCD corrections to diphoton production with an additional jet at the LHC. Our calculation represents the first NNLO-accurate prediction for the transverse momentum distribution of the diphoton system. The improvement in the accuracy of the theoretical prediction is significant, by a factor of up to four relative to NLO QCD as estimated through scale variations. Our calculation is exact except for the finite remainder of the two-loop amplitude which is included at leading color. The numerical impact of this approximated contribution is small. The results of this work are expected to further our understanding of the Higgs boson sector and of the behavior of higher-order corrections to LHC processes.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Stefano Forte ◽  
Giovanni Ridolfi ◽  
Simone Rota

Abstract We derive a general expression for the threshold resummation of transverse momentum distributions for processes with a colorless final state, by suitably generalizing the renormalization-group based approach to threshold resummation previously pursued by two of us. The ensuing expression holds to all logarithmic orders, and it can be used to extend available results in the literature, which only hold up to the next-to-leading log (NLL) level. We check agreement of our result with the existing NLL result, as well as against the known fixed next-to-leading order results for the Higgs transverse momentum distribution in gluon fusion, and we provide explicit expressions at the next-to-next-to-leading log level.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Silvia Ferrario Ravasio ◽  
Giovanni Limatola ◽  
Paolo Nason

Abstract Infrared renormalons in Quantum Chromodynamics are associated with non-perturbative corrections to short distance observables. Linear renormalons, i.e. such that the associated non-perturbative corrections scale like one inverse power of the hard scale, can affect at a non-negligible level even the very high-energy phenomena studied at the Large Hadron Collider. Using an Abelian model, we study the presence of linear renormalons in the transverse momentum distribution of a neutral vector boson Z produced in hadronic collisions. We consider a process where the Z transverse momentum is balanced by a sizable recoil against a coloured final state particle. One may worry that such a colour configuration, not being azimuthally symmetric, could generate unbalanced soft radiation, associated in turn with linear infrared renormalons affecting the transverse momentum distribution of the vector boson. We performed a numerical calculation of the renormalon effects for this process in the so-called large b0 limit. We found no evidence of linear renormalons in the transverse momentum distribution of the Z in the large transverse-momentum region, irrespective of rapidity cuts.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yang-Ming Tai ◽  
Pei-Pin Yang ◽  
Fu-Hu Liu

With the framework of the multisource thermal model, we analyze the experimental transverse momentum spectra of various jets produced in different collisions at high energies. Two energy sources, a projectile participant quark and a target participant quark, are considered. Each energy source (each participant quark) is assumed to contribute to the transverse momentum distribution to be the TP-like function, i.e., a revised Tsallis–Pareto-type function. The contribution of the two participant quarks to the transverse momentum distribution is then the convolution of two TP-like functions. The model distribution can be used to fit the experimental spectra measured by different collaborations. The related parameters such as the entropy index-related, effective temperature, and revised index are then obtained. The trends of these parameters are useful to understand the characteristic of high energy collisions.


2021 ◽  
Vol 103 (1) ◽  
Author(s):  
V. M. Abazov ◽  
B. Abbott ◽  
B. S. Acharya ◽  
M. Adams ◽  
T. Adams ◽  
...  

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Zhong-Bo Kang ◽  
Ding Yu Shao ◽  
Fanyi Zhao

Abstract We derive the transverse momentum dependent (TMD) factorization and resummation formula of the unpolarized transverse momentum distribution (jT) for the single hadron production with the thrust axis in an electron-positron collision. Two different kinematic regions are considered, including small transverse momentum limit jT « Q, and joint transverse momentum and threshold limit jT « Q(1 − zh) « Q, where Q and zh are the hard scattering energy and the observed hadron momentum fraction. Using effective theory methods, we resum logarithms ln(Q/jT) and ln(1 − zh) to all orders. In the end, we present the differential cross sections and Gaussian widths calculated for the inclusive charged pion production and find that our results are consistent with the measurements reported by the Belle collaboration.


Sign in / Sign up

Export Citation Format

Share Document