hamiltonian analysis
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 28)

H-INDEX

23
(FIVE YEARS 3)

Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 14
Author(s):  
Matteo Galaverni ◽  
Gabriele Gionti S. J.

We analyze the Hamiltonian equivalence between Jordan and Einstein frames considering a mini-superspace model of the flat Friedmann–Lemaître–Robertson–Walker (FLRW) Universe in the Brans–Dicke theory. Hamiltonian equations of motion are derived in the Jordan, Einstein, and anti-gravity (or anti-Newtonian) frames. We show that, when applying the Weyl (conformal) transformations to the equations of motion in the Einstein frame, we did not obtain the equations of motion in the Jordan frame. Vice-versa, we re-obtain the equations of motion in the Jordan frame by applying the anti-gravity inverse transformation to the equations of motion in the anti-gravity frame.


Author(s):  
Alessandro Luiz Ribeiro dos Santos ◽  
Denis Dalmazi ◽  
Wayne Leonardo Silva de Paula

Abstract Recently a new model has been proposed to describe free massive spin-2 particles in D dimensions in terms of a non symmetric rank-2 tensor eµν and a mixed symmetry tensor Bµ[αβ]. The model is invariant under linearized diffeomorphisms without Stueckelberg fields. It resembles a spin-2 version of the topologically massive spin-1 BF model (Cremmer-Scherk model). Here we apply the Dirac-Bergmann procedure in order to identify all Hamiltonian constraints and perform a complete counting of degrees of freedom. In D = 3 + 1 we find 5 degrees of freedom corresponding to helicities ±2, ±1, 0 as expected. The positivity of the reduced Hamiltonian is proved by using spin projection operators. We have also proposed a parent action that establishes the duality between the Fierz-Pauli and the new model. The equivalence between gauge invariant correlation functions of both theories is demonstrated.


Author(s):  
U. Tejasvi ◽  
R. D. Eithiraj ◽  
S. Balakrishnan

Problems can be handled properly in game theory as long as a countable number of players are considered, whereas, in real life, we have a large number of players. Hence, games at the thermodynamic limit are analyzed in general. There is a one-to-one correspondence between classical games and the modeled Hamiltonian at a particular equilibrium condition, usually the Nash equilibrium. Such a correspondence is arrived for symmetric games, namely the Prisoner’s Dilemma using the Ising Hamiltonian. In this work, we have shown that another class of games known as potential games can be analyzed with the Ising Hamiltonian. Analysis of this work brings out very close observation with real-world scenarios. In other words, the model of a potential game studied using Ising Hamiltonian predicts behavioral aspects of a large population precisely.


2021 ◽  
Vol 104 (8) ◽  
Author(s):  
W. E. V. Barker ◽  
A. N. Lasenby ◽  
M. P. Hobson ◽  
W. J. Handley

2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Jorge Romero ◽  
Merced Montesinos ◽  
Mariano Celada
Keyword(s):  

Author(s):  
Daniel Blixt ◽  
Maria-Jose Guzman ◽  
Manuel Hohmann ◽  
Christian Pfeifer

2021 ◽  
Vol 53 (5) ◽  
Author(s):  
Merced Montesinos ◽  
Ricardo Escobedo ◽  
Mariano Celada
Keyword(s):  

2021 ◽  
Vol 36 (10) ◽  
pp. 2150068
Author(s):  
Jialiang Dai

We give a canonical Hamiltonian analysis of Podolsky’s generalized electrodynamics by introducing two sets of new variables which help us transform the Lagrangian into an equivalent first-order formalism. After eliminating the unphysical sector, we calculate the physical degrees of freedom of the higher derivative system and obtain the Dirac brackets in the reduced phase space. Then with the aid of the first-class constraints, we construct the independent gauge generator which is closely connected with the BRST charge and the BRST-invariant Hamiltonian. Finally, by choosing appropriate gauge-fixing fermion, we evaluate the path integral of this higher derivative constrained system in BRST quantization scheme with the generalized Lorenz gauge condition.


Author(s):  
María-José Guzmán ◽  
Shymaa Khaled Ibraheem

We introduce a novel procedure for studying the Hamiltonian formalism of new general relativity (NGR) based on the mathematical properties encoded in the constitutive tensor defined by the premetric approach. We derive the canonical momenta conjugate to the tetrad field and study the eigenvalues of the Hessian tensor, which is mapped to a Hessian matrix with the help of indexation formulas. The properties of the Hessian matrix heavily rely on the possible values of the free coefficients [Formula: see text] appearing in the NGR Lagrangian. We find four null eigenvalues associated with trivial primary constraints in the temporal part of the momenta. The remaining eigenvalues are grouped in four sets, which have multiplicity 3, 1, 5 and 3, and can be set to zero depending on different choices of the coefficients [Formula: see text]. There are nine possible different cases when one, two, or three sets of eigenvalues are imposed to vanish simultaneously. All cases lead to a different number of primary constraints, which are consistent with previous work on the Hamiltonian analysis of NGR by Blixt et al. (2018).


Sign in / Sign up

Export Citation Format

Share Document