null geodesics
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 42)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 38 (23) ◽  
pp. 238002
Author(s):  
Felipe A Asenjo ◽  
Sergio A Hojman

Abstract A reply to the previous article commenting on non-geodesical propagation of electromagnetic fields on gravitational backgrounds and the eikonal limit are presented.


2021 ◽  
Vol 38 (23) ◽  
pp. 238001
Author(s):  
Niels Linnemann ◽  
James Read

Abstract We study the propagation of Maxwellian electromagnetic waves in curved spacetimes in terms of the appropriate geometrical optics limit, notions of signal speed, and minimal coupling prescription from Maxwellian theory in flat spacetime. In the course of this, we counter a recent major claim by Asenjo and Hojman (2017) to the effect that the geometrical optics limit is partly ill-defined in Gödel spacetime; we thereby dissolve the present tension concerning established results on wave propagation and the optical limit.


Author(s):  
Rahulkumar Solanki

Abstract The Kottler spacetime in isotropic coordinates is known where the metric is time-dependent. In this paper, the Kottler spacetime is given in isotropic static coordinates (i.e., the metric components are time-independent). The metric is found in terms of the Jacobian elliptic functions through coordinate transformations from the Schwarzschild-(anti-)de Sitter metric. In canonical coordinates, it is known that the unparameterized spatially projected null geodesics of the Kottler and Schwarzschild spacetimes coincide. We show that in isotropic static coordinates, the refractive indices of Kottler and Schwarzschild are not proportional, yielding spatially projected null geodesics that are different.


Author(s):  
Wajiha Javed ◽  
Ali Hamza ◽  
Ali Övgün

In this article, we calculate the deflection angle of tidal charged black hole (TCBH) in weak field limits. First we obtain the Gaussian optical curvature and then apply the Gauss-Bonnet theorem on it. With the help of Gibbons-Werner method, we are able to calculate the light's deflection angle by TCBH in weak field limits. After calculating the deflection angle of light, we check the graphical behavior of TCBH. Moreover, we further find the light's deflection angle in the presence of plasma medium and also check the graphical behavior in the presence of plasma medium. Moreover, we investigate the shadow of TCBH.For calculating the shadow, we first find the null geodesics around the TCBH and then find its shadow radius. We also obtain TCBH's shadow in the plasma medium. Hence, we discuss the shadow of the TCBH using the $M87^{*}$ parameters announced by the Event Horizon Telescope.


Author(s):  
Stephen L. Adler

We show that the recipe for computing the expansions [Formula: see text] and [Formula: see text] of outgoing and ingoing null geodesics normal to a surface admits a covariance group with nonconstant scalar [Formula: see text], corresponding to the mapping [Formula: see text], [Formula: see text]. Under this mapping, the product [Formula: see text] is invariant, and thus the marginal surface computed from the vanishing of [Formula: see text], which is used to define the apparent horizon, is invariant. This covariance group naturally appears in comparing the expansions computed with different choices of coordinate system.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Masaya Amo ◽  
Keisuke Izumi ◽  
Yoshimune Tomikawa ◽  
Hirotaka Yoshino ◽  
Tetsuya Shiromizu

Author(s):  
Monimala Mondal ◽  
Anil Kumar Yadav ◽  
Parthapratim Pradhan ◽  
Sayeedul Islam ◽  
Farook Rahaman

In this paper, we analyze the null geodesics of regular black holes (BHs). A detailed analysis of geodesic structure, both null geodesics and timelike geodesics, has been investigated for the said BH. As an application of null geodesics, we calculate the radius of photon sphere and gravitational bending of light. We also study the shadow of the BH spacetime. Moreover, we determine the relation between radius of photon sphere [Formula: see text] and the shadow observed by a distance observer. Furthermore, we discuss the effect of various parameters on the radius of shadow [Formula: see text]. Also, we compute the angle of deflection for the photons as a physical application of null-circular geodesics. We find the relation between null geodesics and quasinormal mode (QNM) frequency in the eikonal approximation by computing the Lyapunov exponent. It is also shown that (in the eikonal limit) the QNMs of BHs are governed by the parameter of null-circular geodesics. The real part of QNMs frequency determines the angular frequency, whereas the imaginary part determines the instability timescale of the circular orbit. Next, we study the massless scalar perturbations and analyze the effective potential graphically. Massive scalar perturbations are also discussed. As an application of timelike geodesics, we compute the innermost stable circular orbit (ISCO) and marginally bound circular orbit (MBCO) of the regular BHs which are closely related to the BH accretion disk theory. In the appendix, we calculate the relation between angular frequency and Lyapunov exponent for null-circular geodesics.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Yvonne Geyer ◽  
Lionel Mason ◽  
David Skinner

Abstract Ambitwistor strings are chiral (holomorphic) strings whose target is the space of complex null geodesics, ambitwistor space. We introduce twistor representations of ambitwistor space in 6 and 5 dimensions. In 6d the twistor representation is naturally conformally invariant. Anomaly cancellation leads to models that describe biadjoint scalar amplitudes and certain conformally invariant gauge and gravity theories, respectively of 4th and 6th order. There are three such models, reflecting triality for the conformal group SO(8) associated to these 6d models. On reduction to five dimensions, gauge anomaly cancellation requires supersymmetry and the resulting models describe maximally supersymmetric Yang-Mills and gravity. The twistor representation of these ambitwistor strings lead to formulæ for maximally supersymmetric gauge and gravity amplitudes based on the polarized scattering equations in 5d, found earlier by the first two authors.


Sign in / Sign up

Export Citation Format

Share Document