scholarly journals Next-to-leading order hard scattering using fully unintegrated parton distribution functions

2008 ◽  
Vol 78 (7) ◽  
Author(s):  
Ted C. Rogers
Author(s):  
John Campbell ◽  
Joey Huston ◽  
Frank Krauss

Parton Distribution Functions (PDFs) are a necessary ingredient in the calculation of cross sections at collider experiments with hadron beams. This chapter explores the techniques of determining the PDFs and their uncertainties, based on global analyses of data sets arising from a variety of hard-scattering processes. PDFs are determined at leading order, next-to-leading order, and next-to-next-to-leading order, with the corresponding orders of hard coefficients and evolution. Differences in the PDFs of different orders, and in their uncertainties, are described. Combinations of PDFs from different global fitting groups are discussed, and several useful tools for comparisons of PDFs are described.


2016 ◽  
Vol 31 (25) ◽  
pp. 1630023 ◽  
Author(s):  
S. Alekhin ◽  
J. Blümlein ◽  
S.-O. Moch

The status of the determination of the strong coupling constant [Formula: see text] from deep-inelastic scattering and related hard scattering data is reviewed.


1992 ◽  
Vol 07 (29) ◽  
pp. 2695-2702 ◽  
Author(s):  
PRAKASH MATHEWS ◽  
V. RAVINDRAN

We analyze polarized Drell-Yan process using the factorization method and derive operator definitions for polarized parton distribution functions. We demonstrate that a factorization analogous to that in the unpolarized Drell-Yan case holds in this process. We study the leading order gluonic contribution to the first moment of polarized Drell-Yan function and show that it is consistent with the results obtained from polarized deep inelastic scattering.


Sign in / Sign up

Export Citation Format

Share Document