scholarly journals Quasinormal modes around the BTZ black hole at the tricritical generalized massive gravity

2012 ◽  
Vol 86 (6) ◽  
Author(s):  
Yong-Wan Kim ◽  
Yun Soo Myung ◽  
Young-Jai Park
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yun Soo Myung

We investigate thermodynamics of the BTZ black hole in new massive gravity explicitly. Form2l2>1/2withm2being the mass parameter of fourth-order terms andl2AdS3curvature radius, the Hawking-Page phase transition occurs between the BTZ black hole and AdS (thermal) soliton. Form2l2<1/2, however, this transition unlikely occurs but a phase transition between the BTZ black hole and the massless BTZ black hole is possible to occur. We may call the latter the inverse Hawking-Page phase transition and this transition is favored in the new massive gravity.


2019 ◽  
Vol 28 (09) ◽  
pp. 1950113 ◽  
Author(s):  
Bin Liang ◽  
Shao-Wen Wei ◽  
Yu-Xiao Liu

Using the quasinormal modes of a massless scalar perturbation, we investigate the small/large black hole phase transition in the Lorentz symmetry breaking massive gravity. We mainly focus on two issues: (i) the sign change of slope of the quasinormal mode frequencies in the complex-[Formula: see text] diagram; (ii) the behaviors of the imaginary part of the quasinormal mode frequencies along the isobaric or isothermal processes. For the first issue, our result shows that, at low fixed temperature or pressure, the phase transition can be probed by the sign change of slope. While increasing the temperature or pressure to certain values near the critical point, there will appear the deflection point, which indicates that such method may not be appropriate to test the phase transition. In particular, the behavior of the quasinormal mode frequencies for the small and large black holes tend to be the same at the critical point. For the second issue, it is shown that the nonmonotonic behavior is observed only when the small/large black hole phase transition occurs. Therefore, this property can provide us with an additional method to probe the phase transition through the quasinormal modes.


2012 ◽  
Vol 85 (8) ◽  
Author(s):  
Yun Soo Myung ◽  
Yong-Wan Kim ◽  
Young-Jai Park

2017 ◽  
Vol 773 ◽  
pp. 325-331 ◽  
Author(s):  
Behnam Pourhassan ◽  
Mir Faizal ◽  
Zaid Zaz ◽  
Anha Bhat

2015 ◽  
Vol 30 (13) ◽  
pp. 1550078 ◽  
Author(s):  
Sharmanthie Fernando

In this paper, we have studied the area and mass spectrum of a Lifshitz black hole in 2+1 dimensions. This black hole is obtained for conformal gravity in 2+1 dimensions and is asymptotic to z = 0 Lifshitz spacetime. Quasinormal modes (QNM) frequencies of the conformally coupled scalar field perturbations are employed for the purpose of analyzing the area spectrum of the black hole. We have used two methods: modified Hod's conjecture and Kunsttater's method. In both methods, the area and the mass spectrum is shown to be equally spaced. We compared our results with the area spectrum of the BTZ black hole and the z = 3 black hole and made suggestions to extend this work in the future.


2004 ◽  
Vol 21 (12) ◽  
pp. 2801-2809 ◽  
Author(s):  
Juan Crisóstomo ◽  
Samuel Lepe ◽  
Joel Saavedra

Author(s):  
Muhammad Yasir ◽  
Kazuharu Bamba ◽  
Abdul Jawad

We consider the Hairy black hole of dimensionally continued gravity with power-Yang–Mills magnetic source and Lorentz symmetry violating Bañados, Teitelboim and Zanelli (BTZ) black hole in massive gravity. We utilize the general form of first law of black hole thermodynamics and compute different thermodynamic quantities. Keeping in mind the importance of negative cosmological constant [Formula: see text], we derive corresponding equations of state and discuss the phase transitions which is comparable with chemical Van der Waals fluid. We also find out the critical points and observe that system exhibits first-order small as well as large black holes phase transitions.


Sign in / Sign up

Export Citation Format

Share Document