Thermodynamic properties of modified hairy and BTZ black holes

Author(s):  
Muhammad Yasir ◽  
Kazuharu Bamba ◽  
Abdul Jawad

We consider the Hairy black hole of dimensionally continued gravity with power-Yang–Mills magnetic source and Lorentz symmetry violating Bañados, Teitelboim and Zanelli (BTZ) black hole in massive gravity. We utilize the general form of first law of black hole thermodynamics and compute different thermodynamic quantities. Keeping in mind the importance of negative cosmological constant [Formula: see text], we derive corresponding equations of state and discuss the phase transitions which is comparable with chemical Van der Waals fluid. We also find out the critical points and observe that system exhibits first-order small as well as large black holes phase transitions.

2019 ◽  
Vol 2019 (10) ◽  
Author(s):  
Nadeem-ul-islam ◽  
Prince A Ganai ◽  
Sudhaker Upadhyay

Abstract We discuss the effect of small statistical thermal fluctuations around the equilibrium of the thermodynamics of a small non-rotating BTZ black hole. This is done by evaluating the leading-order corrections to the thermodynamical equations of state, namely entropy, free energy, internal energy, pressure, enthalpy, Gibbs free energy, and specific heat, quantitatively. In order to analyze the effects of perturbations on the thermodynamics, we plot various graphs and compare corrected and non-corrected thermodynamic quantities with respect to the event horizon radius of a non-rotating BTZ black hole. We also derive the first-order corrections to isothermal compressibility.


2019 ◽  
Vol 34 (16) ◽  
pp. 1950121
Author(s):  
Jun Li ◽  
Kun Meng

We construct a static black hole solution of Gauss–Bonnet-massive gravity coupled to nonlinear Maxwell and Yang–Mills fields in higher dimensions. Then we calculate related thermodynamic quantities, check the validity of the first law of black hole thermodynamics and analyze the phase transition behaviors of the black hole in extended phase space.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yun Soo Myung

We investigate thermodynamics of the BTZ black hole in new massive gravity explicitly. Form2l2>1/2withm2being the mass parameter of fourth-order terms andl2AdS3curvature radius, the Hawking-Page phase transition occurs between the BTZ black hole and AdS (thermal) soliton. Form2l2<1/2, however, this transition unlikely occurs but a phase transition between the BTZ black hole and the massless BTZ black hole is possible to occur. We may call the latter the inverse Hawking-Page phase transition and this transition is favored in the new massive gravity.


2020 ◽  
Vol 29 (12) ◽  
pp. 2050081
Author(s):  
S. Rajaee Chaloshtary ◽  
M. Kord Zangeneh ◽  
S. Hajkhalili ◽  
A. Sheykhi ◽  
S. M. Zebarjad

We investigate a new class of [Formula: see text]-dimensional topological black hole solutions in the context of massive gravity and in the presence of logarithmic nonlinear electrodynamics. Exploring higher-dimensional solutions in massive gravity coupled to nonlinear electrodynamics is motivated by holographic hypothesis as well as string theory. We first construct exact solutions of the field equations and then explore the behavior of the metric functions for different values of the model parameters. We observe that our black holes admit the multi-horizons caused by a quantum effect called anti-evaporation. Next, by calculating the conserved and thermodynamic quantities, we obtain a generalized Smarr formula. We find that the first law of black holes thermodynamics is satisfied on the black hole horizon. We study thermal stability of the obtained solutions in both canonical and grand canonical ensembles. We reveal that depending on the model parameters, our solutions exhibit a rich variety of phase structures. Finally, we explore, for the first time without extending thermodynamics phase space, the critical behavior and reentrant phase transition for black hole solutions in massive gravity theory. We realize that there is a zeroth-order phase transition for a specified range of charge value and the system experiences a large/small/large reentrant phase transition due to the presence of nonlinear electrodynamics.


2020 ◽  
Vol 29 (15) ◽  
pp. 2050108
Author(s):  
Yubo Ma ◽  
Yang Zhang ◽  
Ren Zhao ◽  
Shuo Cao ◽  
Tonghua Liu ◽  
...  

In this paper, we investigate the combined effects of the cloud of strings and quintessence on the thermodynamics of a Reissner–Nordström–de Sitter black hole. Based on the equivalent thermodynamic quantities considering the correlation between the black hole horizon and the cosmological horizon, we extensively discuss the phase transitions of the spacetime. Our analysis proves that similar to the case in AdS spacetime, second-order phase transitions could take place under certain conditions, with the absence of first-order phase transition in the charged de Sitter (dS) black holes with cloud of string and quintessence. The effects of different thermodynamic quantities on the phase transitions are also quantitatively discussed, which provides a new approach to study the thermodynamic qualities of unstable dS spacetime. Focusing on the entropy force generated by the interaction between the black hole horizon and the cosmological horizon, as well as the Lennard–Jones force between two particles, our results demonstrate the strong degeneracy between the entropy force of the two horizons and the ratio of the horizon positions, which follows the surprisingly similar law given the relation between the Lennard–Jones force and the ratio of two particle positions. Therefore, the study of the entropy force between two horizons is not only beneficial to the deep exploration of the three modes of cosmic evolution, but also helpful to understand the correlation between the microstates of particles in black holes and those in ordinary thermodynamic systems.


2021 ◽  
Vol 9 ◽  
Author(s):  
Fatemeh Naeimipour ◽  
Masoumeh Tavakoli

In this paper, we investigate the thermal stability and Joule-Thomson expansion of some new quasitopological black hole solutions. We first study the higher-dimensional static quasitopological black hole solutions in the presence of Born-Infeld, exponential, and logarithmic nonlinear electrodynamics. The stable regions of these solutions are independent of the types of the nonlinear electrodynamics. The solutions with horizons relating to the positive constant curvature, k=+1, have a larger region in thermal stability, if we choose positive quasitopological coefficients, μi>0. We also review the power Maxwell quasitopological black hole. We then obtain the five-dimensional Yang-Mills quasitopological black hole solution and compare it with the quasitopological Maxwell solution. For large values of the electric charge, q, and the Yang-Mills charge, e, we showed that the stable range of the Maxwell quasitopological black hole is larger than the Yang-Mills one. This is while thermal stability for small charges has the same behavior for these black holes. Thereafter, we obtain the thermodynamic quantities for these solutions and then study the Joule-Thomson expansion. We consider the temperature changes in an isenthalpic process during this expansion. The obtained results show that the inversion curves can divide the isenthalpic ones into two parts in the inversion pressure, Pi. For P<Pi, a cooling phenomenon with positive slope happens in T−P diagram, while there is a heating process with a negative slope for P>Pi. As the values of the nonlinear parameter, β, the electric and Yang-Mills charges decrease, the temperature goes to zero with a small slope and so the heating phenomena happens slowly.


2009 ◽  
Vol 18 (11) ◽  
pp. 1773-1783 ◽  
Author(s):  
A. SHEYKHI ◽  
H. ALAVIRAD

We derive a new analytic solution of (n + 1)-dimensional (n ≥ 4) Brans–Dicke–Maxwell theory in the presence of a potential for the scalar field, by applying a conformal transformation to the dilaton gravity theory. Such solutions describe topological charged black holes with unusual asymptotics. We obtain the conserved and thermodynamic quantities through the use of the Euclidean action method. We also study the thermodynamics of the solutions and verify that the conserved and thermodynamic quantities of the solutions satisfy the first law of black hole thermodynamics.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ming Zhang ◽  
De-Cheng Zou ◽  
Rui-Hong Yue

Motivated by recent developments of black hole thermodynamics in de Rham, Gabadadze, and Tolley (dRGT) massive gravity, we study the critical behaviors of topological Anti-de Sitter (AdS) black holes in the presence of Born-Infeld nonlinear electrodynamics. Here the cosmological constant appears as a dynamical pressure of the system and its corresponding conjugate quantity is interpreted as thermodynamic volume. This shows that, besides the Van der Waals-like SBH/LBH phase transitions, the so-called reentrant phase transition (RPT) appears in four-dimensional space-time when the coupling coefficients cim2 of massive potential and Born-Infeld parameter b satisfy some certain conditions. In addition, we also find the triple critical points and the small/intermediate/large black hole phase transitions for d=5.


2015 ◽  
Vol 93 (9) ◽  
pp. 999-1002 ◽  
Author(s):  
David Kubizňák ◽  
Robert B. Mann

The mass of a black hole has traditionally been identified with its energy. We describe a new perspective on black hole thermodynamics, one that identifies the mass of a black hole with chemical enthalpy, and the cosmological constant as thermodynamic pressure. This leads to an understanding of black holes from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. Both charged and rotating black holes exhibit novel chemical-type phase behaviour, hitherto unseen.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Yubo Ma ◽  
Yang Zhang ◽  
Lichun Zhang ◽  
Liang Wu ◽  
Ying Gao ◽  
...  

AbstractIt is well known that de Sitter(dS) black holes generally have a black hole horizon and a cosmological horizon, both of which have Hawking radiation. But the radiation temperature of the two horizons is generally different, so dS black holes do not meet the requirements of thermal equilibrium stability, which brings certain difficulties to the study of the thermodynamic characteristics of black holes. In this paper, dS black hole is regarded as a thermodynamic system, and the effective thermodynamic quantities of the system are obtained. The influence of various state parameters on the effective thermodynamic quantities in the massive gravity space-time is discussed. The condition of the phase transition of the de Sitter black hole in massive gravity space-time is given. We consider that the total entropy of the dS black hole is the sum of the corresponding entropy of the two horizons plus an extra term from the correlation of the two horizons. By comparing the entropic force of interaction between black hole horizon and the cosmological horizon with Lennard-Jones force between two particles, we find that the change rule of entropic force between the two system is surprisingly the same. The research will help us to explore the real reason of accelerating expansion of the universe.


Sign in / Sign up

Export Citation Format

Share Document