scholarly journals Discovering new gauge bosons of electroweak symmetry breaking at LHC-8

2012 ◽  
Vol 86 (9) ◽  
Author(s):  
Chun Du ◽  
Hong-Jian He ◽  
Yu-Ping Kuang ◽  
Bin Zhang ◽  
Neil D. Christensen ◽  
...  
2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Véronique Bernard ◽  
Sébastien Descotes-Genon ◽  
Luiz Vale Silva

Abstract We consider a left-right symmetric extension of the Standard Model where the spontaneous breakdown of the left-right symmetry is triggered by doublets. The electroweak ρ parameter is protected from large corrections in this Doublet Left-Right Model (DLRM), contrary to the triplet case. This allows in principle for more diverse patterns of symmetry breaking. We consider several constraints on the gauge and scalar sectors of DLRM: the unitarity of scattering processes involving gauge bosons with longitudinal polarisations, the radiative corrections to the muon ∆r parameter and the electroweak precision observables measured at the Z pole and at low energies. Combining these constraints within the frequentist CKMfitter approach, we see that the fit pushes the scale of left-right symmetry breaking up to a few TeV, while favouring an electroweak symmetry breaking triggered not only by the SU(2)L×SU(2)R bi-doublet, which is the case most commonly considered in the literature, but also by the SU(2)L doublet.


1996 ◽  
Vol 11 (03) ◽  
pp. 247-255
Author(s):  
M.V. RAMANA

We calculate the production rate of gauge-boson pairs at e+e− colliders in a model with a “hidden” electroweak symmetry breaking sector, i.e. one in which there is a large number of particles in the symmetry breaking sector other than the W± and Z0. We show that the background exceeds the two gauge-boson fusion signals of electroweak symmetry breaking. This implies that in order to explore this model we must be prepared to observe final states other than gauge-bosons.


2010 ◽  
Vol 25 (13) ◽  
pp. 2679-2698 ◽  
Author(s):  
NORIAKI KITAZAWA

The possibility of dynamical electroweak symmetry breaking by strong coupling gauge interaction in models with D-branes in String Theory is examined. Instead of elementary scalar Higgs doublet fields, the gauge symmetry with strong coupling (technicolor) is introduced. As the first step of this direction, a toy model, which is not fully realistic, is concretely analyzed in some detail. The model consists of D-branes and anti-D-branes at orbifold singularities in (T2 × T2 × T2)/Z3 which preserves supersymmetry. Supersymmetry is broken through the brane supersymmetry breaking. It is pointed out that the problem of large S parameter in dynamical electroweak symmetry breaking scenario may be solved by natural existence of kinetic term mixings between hypercharge U(1) gauge boson and massive anomalous U(1) gauge bosons. The problems to be solved toward constructing more realistic models are clarified in the analysis.


2010 ◽  
Vol 25 (20) ◽  
pp. 3911-3932 ◽  
Author(s):  
HIDENORI S. FUKANO ◽  
FRANCESCO SANNINO

We analyze the constraints on the the vacuum polarization of the Standard Model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and masses of the lightest spin-one resonances. Our analysis is applicable to any four and higher-dimensional extension of the Standard Model reducing to models of dynamical electroweak symmetry breaking.


2017 ◽  
Vol 32 (35) ◽  
pp. 1747008
Author(s):  
K. Tuominen

A fully dynamical origin for the masses of weak gauge bosons and heavy quarks of the Standard Model is considered. Electroweak symmetry breaking and the gauge boson masses arise from new strong dynamics, which leads to the appearance of a composite scalar in the spectrum of excitations. In order to generate mass for the Standard Model fermions, we consider extended gauge dynamics, effectively represented by four fermion interactions at presently accessible energies. By systematically treating these interactions, we show that they lead to a large reduction of the mass of the scalar resonance. Therefore, interpreting the scalar as the recently observed 125 GeV state, implies that the mass originating solely from new strong dynamics can be much heavier, of the order of 1 TeV. The couplings of the scalar resonance with the Standard Model gauge bosons and fermions are evaluated, and found to be compatible with the current LHC results.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Christian W. Bauer ◽  
Nicholas L. Rodd ◽  
Bryan R. Webber

Abstract We compute the decay spectrum for dark matter (DM) with masses above the scale of electroweak symmetry breaking, all the way to the Planck scale. For an arbitrary hard process involving a decay to the unbroken standard model, we determine the prompt distribution of stable states including photons, neutrinos, positrons, and antiprotons. These spectra are a crucial ingredient in the search for DM via indirect detection at the highest energies as being probed in current and upcoming experiments including IceCube, HAWC, CTA, and LHAASO. Our approach improves considerably on existing methods, for instance, we include all relevant electroweak interactions.


2001 ◽  
Vol 16 (13) ◽  
pp. 835-844
Author(s):  
ILIA GOGOLADZE ◽  
MIRIAN TSULAIA

We suggest a new mechanism for electroweak symmetry breaking in the supersymmetric Standard Model. Our suggestion is based on the presence of an anomalous U (1)A gauge symmetry, which naturally arises in the four-dimensional superstring theory, and heavily relies on the value of the corresponding Fayet–Illiopoulos ξ-term.


2016 ◽  
Vol 31 (11) ◽  
pp. 1650065
Author(s):  
Pham Quang Hung ◽  
Nguyen Nhu Le

We present the Higgs mechanism in the context of the EW-scale [Formula: see text] model in which electroweak symmetry is dynamically broken by condensates of mirror quark and right-handed neutrino through the exchange of one fundamental Higgs doublet and one fundamental Higgs triplet, respectively. The formation of these condensates is dynamically investigated by using the Schwinger–Dyson approach. The occurrence of these condensates will give rise to the rich Higgs spectrum. In addition, the VEVs of Higgs fields is also discussed in this dynamical phenomenon.


Sign in / Sign up

Export Citation Format

Share Document