scholarly journals Evolution of thef-mode instability in neutron stars and gravitational wave detectability

2013 ◽  
Vol 87 (8) ◽  
Author(s):  
A. Passamonti ◽  
E. Gaertig ◽  
K. D. Kokkotas ◽  
D. Doneva
2001 ◽  
Vol 10 (04) ◽  
pp. 381-441 ◽  
Author(s):  
NILS ANDERSSON ◽  
KOSTAS D. KOKKOTAS

In this review we summarize the current understanding of the gravitational-wave driven instability associated with the so-called r-modes in rotating neutron stars. We discuss the nature of the r-modes, the detailed mechanics of the instability and its potential astrophysical significance. In particular we discuss results regarding the spin-evolution of nascent neutron stars, the detectability of r-mode gravitational waves and mechanisms limiting the spin-rate of accreting neutron stars in binary systems.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 97
Author(s):  
Nils Andersson

We provide a bird’s-eye view of neutron-star seismology, which aims to probe the extreme physics associated with these objects, in the context of gravitational-wave astronomy. Focussing on the fundamental mode of oscillation, which is an efficient gravitational-wave emitter, we consider the seismology aspects of a number of astrophysically relevant scenarios, ranging from transients (like pulsar glitches and magnetar flares), to the dynamics of tides in inspiralling compact binaries and the eventual merged object and instabilities acting in isolated, rapidly rotating, neutron stars. The aim is not to provide a thorough review, but rather to introduce (some of) the key ideas and highlight issues that need further attention.


Author(s):  
Nils Andersson

This chapter introduces the different classes of compact objects—white dwarfs, neutron stars, and black holes—that are relevant for gravitational-wave astronomy. The ideas are placed in the context of developing an understanding of the likely endpoint(s) of stellar evolution. Key ideas like Fermi gases and the Chandrasekhar mass are discussed, as is the emergence of general relativity as a cornerstone of astrophysics in the 1950s. Issues associated with different formation channels for, in particular, black holes are considered. The chapter ends with a discussion of the supermassive black holes that are found at the centre of galaxies.


2018 ◽  
Vol 14 (S346) ◽  
pp. 397-416
Author(s):  
Michela Mapelli

AbstractWhat are the formation channels of merging black holes and neutron stars? The first two observing runs of Advanced LIGO and Virgo give us invaluable insights to address this question, but a new approach to theoretical models is required, in order to match the challenges posed by the new data. In this review, I discuss the impact of stellar winds, core-collapse and pair instability supernovae on the formation of compact remnants in both isolated and dynamically formed binaries. Finally, I show that dynamical processes, such as the runaway collision scenario and the Kozai-Lidov mechanism, leave a clear imprint on the demography of merging systems.


Sign in / Sign up

Export Citation Format

Share Document