scholarly journals Second Einstein Telescope mock science challenge: Detection of the gravitational-wave stochastic background from compact binary coalescences

2014 ◽  
Vol 89 (8) ◽  
Author(s):  
Tania Regimbau ◽  
Duncan Meacher ◽  
Michael Coughlin
2013 ◽  
Vol 28 (38) ◽  
pp. 1350174 ◽  
Author(s):  
EDGARD F. D. EVANGELISTA ◽  
JOSÉ C. N. DE ARAUJO

In the study of gravitational waves (GWs), the stochastic background generated by compact binary systems are among the most important kinds of signals. The reason for such an importance has to do with their probable detection by the interferometric detectors [such as the Advanced LIGO (ALIGO) and Einstein Telescope (ET)] in the near future. In this paper we are concerned with, in particular, the stochastic background of GWs generated by double neutron star (DNS) systems in circular orbits during their periodic and quasi-periodic phases. Our aim here is to describe a new method to calculate such spectra, which is based on an analogy with a problem of Statistical Mechanics. Besides, an important characteristic of our method is to consider the time evolution of the orbital parameters.


2020 ◽  
Vol 245 ◽  
pp. 07050
Author(s):  
Stefano Bagnasco

Advanced Virgo is an interferometer for the detection of gravitational waves at the European Gravitational Observatory in Italy. Along with the two Advanced LIGO interferometers in the US, Advanced Virgo is being used to collect data from astrophysical sources such as compact binary coalescences and is currently running the third observational period, collecting gravitational wave event candidates at a rate of more than once per week. Data from the interferometer are processed by running search pipelines for several expected signals, from coalescing compact binaries to continuous waves and burst events. Furthermore, detector characterisation studies are run. Some of the processing needs to be done with low latency, to be able to provide triggers for other observatories and make multi-messenger observations possible. Deep searches are run offline on external computing centres. Thus, data needs also to be reliably and promptly distributed from the EGO site to computer centres in Europe and the US for further analysis and archival storage. Two of the defining characteristics of Virgo computing are the heterogeneity of the activities and the need to interoperate with LIGO. A very wide array of analysis pipelines differing in scientific target, implementation details and running environment assumptions have to be allowed to run ubiquitously and uniformly on dedicated resources and, in perspective, on heterogeneous infrastructures. The current status, possible strategies and outlook of Virgo computing are discussed.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Xiaogang Zheng ◽  
Shuo Cao ◽  
Yuting Liu ◽  
Marek Biesiada ◽  
Tonghua Liu ◽  
...  

AbstractIn order to estimate cosmic curvature from cosmological probes like standard candles, one has to measure the luminosity distance $$D_L(z)$$ D L ( z ) , its derivative with respect to redshift $$D'_L(z)$$ D L ′ ( z ) and the expansion rate H(z) at the same redshift. In this paper, we study how such idea could be implemented with future generation of space-based DECi-hertz Interferometer Gravitational-wave Observatory (DECIGO), in combination with cosmic chronometers providing cosmology-independent H(z) data. Our results show that for the Hubble diagram of simulated DECIGO data acting as a new type of standard siren, it would be able to constrain cosmic curvature with the precision of $$\varDelta \varOmega _k= 0.09$$ Δ Ω k = 0.09 with the currently available sample of 31 measurements of Hubble parameters. In the framework of the third generation ground-based gravitational wave detectors, the spatial curvature is constrained to be $$\varDelta \varOmega _k= 0.13$$ Δ Ω k = 0.13 for Einstein Telescope (ET). More interestingly, compared to other approaches aiming for model-independent estimations of spatial curvature, our analysis also achieve the reconstruction of the evolution of $$\varOmega _k(z)$$ Ω k ( z ) , in the framework of a model-independent method of Gaussian processes (GP) without assuming a specific form. Therefore, one can expect that the newly emerged gravitational wave astronomy can become useful in local measurements of cosmic curvature using distant sources.


2020 ◽  
Author(s):  
◽  
Cari Powell

The aim of this research is to use modern techniques in scalar field Cosmol-ogy to produce methods of detecting gravitational waves and apply them to current gravitational waves experiments and those that will be producing results in the not too distant future. In the first chapter we discuss dark matter and some of its candidates, specifically, the axion. We then address its relationship with gravitational waves. We also discuss inflation and how it can be used to detect gravitational waves. Chapter 2 concentrates on constructing a multi field system of axions in order to increase the mass range of the ultralight axion, putting it into the observation range of pul-sar timing arrays. Chapter 3 discusses non-attractor inflation which is able to enhance stochastic background gravitational waves at scales that allows them to be measured by gravitational wave experiments. Chapter 4 uses a similar method to chapter 3 and applies it to 3-point overlap functions for tensor, scalar and a combination of the two polarisations.


Sign in / Sign up

Export Citation Format

Share Document