scholarly journals Virgo and Gravitational-Wave Computing in Europe

2020 ◽  
Vol 245 ◽  
pp. 07050
Author(s):  
Stefano Bagnasco

Advanced Virgo is an interferometer for the detection of gravitational waves at the European Gravitational Observatory in Italy. Along with the two Advanced LIGO interferometers in the US, Advanced Virgo is being used to collect data from astrophysical sources such as compact binary coalescences and is currently running the third observational period, collecting gravitational wave event candidates at a rate of more than once per week. Data from the interferometer are processed by running search pipelines for several expected signals, from coalescing compact binaries to continuous waves and burst events. Furthermore, detector characterisation studies are run. Some of the processing needs to be done with low latency, to be able to provide triggers for other observatories and make multi-messenger observations possible. Deep searches are run offline on external computing centres. Thus, data needs also to be reliably and promptly distributed from the EGO site to computer centres in Europe and the US for further analysis and archival storage. Two of the defining characteristics of Virgo computing are the heterogeneity of the activities and the need to interoperate with LIGO. A very wide array of analysis pipelines differing in scientific target, implementation details and running environment assumptions have to be allowed to run ubiquitously and uniformly on dedicated resources and, in perspective, on heterogeneous infrastructures. The current status, possible strategies and outlook of Virgo computing are discussed.

2021 ◽  
Vol 923 (2) ◽  
pp. 254
Author(s):  
Tito Dal Canton ◽  
Alexander H. Nitz ◽  
Bhooshan Gadre ◽  
Gareth S. Cabourn Davies ◽  
Verónica Villa-Ortega ◽  
...  

Abstract The third observing run of Advanced LIGO and Advanced Virgo took place between 2019 April and 2020 March and resulted in dozens of gravitational-wave candidates, many of which are now published as confident detections. A crucial requirement of the third observing run was the rapid identification and public reporting of compact binary mergers, which enabled massive follow-up observation campaigns with electromagnetic and neutrino observatories. PyCBC Live is a low-latency search for compact binary mergers based on frequency-domain matched filtering, which was used during the second and third observing runs, together with other low-latency analyses, to generate these rapid alerts from the data acquired by LIGO and Virgo. This paper describes and evaluates the improvements made to PyCBC Live after the second observing run, which defined its operation and performance during the third observing run.


2014 ◽  
Vol 789 (1) ◽  
pp. 65 ◽  
Author(s):  
Daisuke Yonetoku ◽  
Takashi Nakamura ◽  
Tatsuya Sawano ◽  
Keitaro Takahashi ◽  
Asuka Toyanago

2019 ◽  
Vol 488 (3) ◽  
pp. 3810-3817 ◽  
Author(s):  
Jade Powell ◽  
Simon Stevenson ◽  
Ilya Mandel ◽  
Peter Tiňo

ABSTRACT The mass and spin distributions of compact binary gravitational-wave sources are currently uncertain due to complicated astrophysics involved in their formation. Multiple sub-populations of compact binaries representing different evolutionary scenarios may be present amongst sources detected by Advanced LIGO and Advanced Virgo. In addition to hierarchical modelling, unmodelled methods can aid in determining the number of sub-populations and their properties. In this paper, we apply Gaussian mixture model clustering to 1000 simulated gravitational-wave compact binary sources from a mixture of five sub-populations. Using both mass and spin as input parameters, we determine how many binary detections are needed to accurately determine the number of sub-populations and their mass and spin distributions. In the most difficult case that we consider, where two sub-populations have identical mass distributions but differ in their spin, which is poorly constrained by gravitational-wave detections, we find that ∼400 detections are needed before we can identify the correct number of sub-populations.


2000 ◽  
Vol 09 (03) ◽  
pp. 325-329 ◽  
Author(s):  
SUKANTA BOSE ◽  
ARCHANA PAI ◽  
SANJEEV DHURANDHAR

We formulate the data analysis problem for the detection of the Newtonian waveform from an inspiraling, compact binary by a network of arbitrarily oriented and arbitrarily located laser interferometric gravitational-wave detectors. We obtain for the first time the relation between the optimal statistic and the magnitude of the network correlation vector, which is constructed from the matched network-filter.


Author(s):  
Dimitri Estevez ◽  
Nicolas Andres ◽  
Maria Assiduo ◽  
Florian Aubin ◽  
Roberto Chierici ◽  
...  

Abstract We describe the method used by the Multi-Band Template Analysis (MBTA) pipeline to compute the probability of astrophysical origin, pastro, of compact binary coalescence candidates in LIGO-Virgo data from the third observing run (O3). The calculation is performed as part of the offline analysis and is used to characterize candidate events, along with their source classification. The technical details and the implementation are described, as well as the results from the first half of the third observing run (O3a) published in GWTC-2.1. The performance of the method is assessed on injections of simulated gravitational-wave signals in O3a data using a parameterization of pastro as a function of the MBTA combined ranking statistic. Possible sources of statistical and systematic uncertainties are discussed, and their effect on pastro quantified.


Sign in / Sign up

Export Citation Format

Share Document