Erratum: Radiated power and radiation reaction forces of coherently oscillating charged particles in classical electrodynamics [Phys. Rev. D91, 096006 (2015)]

2015 ◽  
Vol 92 (7) ◽  
Author(s):  
Pardis Niknejadi ◽  
John M. J. Madey ◽  
Jeremy M. D. Kowalczyk
Author(s):  
Richard R. Freeman ◽  
James A. King ◽  
Gregory P. Lafyatis

Electromagnetic Radiation is a graduate level book on classical electrodynamics with a strong emphasis on radiation. This book is meant to quickly and efficiently introduce students to the electromagnetic radiation science essential to a practicing physicist. While a major focus is on light and its interactions, topics in radio frequency radiation, x-rays, and beyond are also treated. Special emphasis is placed on applications, with many exercises and homework problems. The format of the book is designed to convey the basic concepts of a topic in the main central text in the book in a mathematically rigorous manner, but with detailed derivations routinely relegated to the accompanying side notes or end of chapter “Discussions.” The book is composed of four parts: Part I is a review of basic E&M, and assumes the reader has a had a good upper division undergraduate course, and while it offers a concise review of topics covered in such a course, it does not treat any given topic in detail; specifically electro- and magnetostatics. Part II addresses the origins of radiation in terms of time variations of charge and current densities within the source, and presents Jefimenko’s field equations as derived from retarded potentials. Part III introduces special relativity and its deep connection to Maxwell’s equations, together with an introduction to relativistic field theory, as well as the relativistic treatment of radiation from an arbitrarily accelerating charge. A highlight of this part is a chapter on the still partially unresolved problem of radiation reaction on an accelerating charge. Part IV treats the practical problems of electromagnetic radiation interacting with matter, with chapters on energy transport, scattering, diffraction and finally an illuminating, application-oriented treatment of fields in confined environments.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Walter D. Goldberger ◽  
Ira Z. Rothstein

Abstract Using Effective Field Theory (EFT) methods, we compute the effects of horizon dissipation on the gravitational interactions of relativistic binary black hole systems. We assume that the dynamics is perturbative, i.e it admits an expansion in powers of Newton’s constant (post-Minkowskian, or PM, approximation). As applications, we compute corrections to the scattering angle in a black hole collision due to dissipative effects to leading PM order, as well as the post-Newtonian (PN) corrections to the equations of motion of binary black holes in non-relativistic orbits, which represents the leading order finite size effect in the equations of motion. The methods developed here are also applicable to the case of more general compact objects, eg. neutron stars, where the magnitude of the dissipative effects depends on non-gravitational physics (e.g, the equation of state for nuclear matter).


1997 ◽  
Vol 56 (3) ◽  
pp. 3624-3627 ◽  
Author(s):  
Frederik Denef ◽  
Joris Raeymaekers ◽  
Urban M. Studer ◽  
Walter Troost

2018 ◽  
Vol 861 (1) ◽  
pp. 2 ◽  
Author(s):  
Arman Tursunov ◽  
Martin Kološ ◽  
Zdeněk Stuchlík ◽  
Dmitri V. Gal’tsov

Author(s):  
Peter W. Milonni

This chapter reviews some topics in classical electrodynamics that are fundamental for modern quantum optics and that appear throughout the remaining chapters, includingelectric dipole radiation, electromagnetic energy, Abraham and Minkowski momenta in dielectric media, photon momentum, and Rayleigh scattering. Other foundational topics treatedare Earnshaw’s theorem, gauges and Lorentz transformations of fields, radiation reaction, the Ewald-Oseen extinction theorem, different forms of stress tensors in dielectric media, and the optical theorem.


Sign in / Sign up

Export Citation Format

Share Document