Classical tunneling as a consequence of radiation reaction forces

1997 ◽  
Vol 56 (3) ◽  
pp. 3624-3627 ◽  
Author(s):  
Frederik Denef ◽  
Joris Raeymaekers ◽  
Urban M. Studer ◽  
Walter Troost
2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Walter D. Goldberger ◽  
Ira Z. Rothstein

Abstract Using Effective Field Theory (EFT) methods, we compute the effects of horizon dissipation on the gravitational interactions of relativistic binary black hole systems. We assume that the dynamics is perturbative, i.e it admits an expansion in powers of Newton’s constant (post-Minkowskian, or PM, approximation). As applications, we compute corrections to the scattering angle in a black hole collision due to dissipative effects to leading PM order, as well as the post-Newtonian (PN) corrections to the equations of motion of binary black holes in non-relativistic orbits, which represents the leading order finite size effect in the equations of motion. The methods developed here are also applicable to the case of more general compact objects, eg. neutron stars, where the magnitude of the dissipative effects depends on non-gravitational physics (e.g, the equation of state for nuclear matter).


1975 ◽  
Vol 16 (7) ◽  
pp. 1380-1382 ◽  
Author(s):  
R. Tabensky ◽  
D. Villarroel

1986 ◽  
Vol 64 (2) ◽  
pp. 140-145 ◽  
Author(s):  
Clifford M. Will

The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. We summarize recent developments in two areas in which approximations are important: (a) the quadrupole approximation, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel–Kramers–Brillouin approximation gives accurate estimates of the complex frequencies of the modes.


2019 ◽  
Vol 34 (15) ◽  
pp. 1950077 ◽  
Author(s):  
Janos Polonyi

The Abraham–Lorentz force is a finite remnant of the UV singular structure of the self-interaction of a point charge with its own field. The satisfactory description of such an interaction needs a relativistic regulator. This turns out to be a problematic point because the energy of regulated relativistic cutoff theories is unbounded from below. However, one can construct point-splitting regulators which keep the Abraham–Lorentz force stable. The classical language can be reconciled with QED by pointing out that the effective quantum theory for the electric charge supports a saddle point producing the classical radiation reaction forces.


Sign in / Sign up

Export Citation Format

Share Document