scholarly journals ργ*→π(ρ)transition form factors in the perturbative QCD factorization approach

2015 ◽  
Vol 92 (9) ◽  
Author(s):  
Ya-Lan Zhang ◽  
Shan Cheng ◽  
Jun Hua ◽  
Zhen-Jun Xiao
2009 ◽  
Vol 24 (31) ◽  
pp. 5845-5860 ◽  
Author(s):  
K. AZIZI ◽  
R. KHOSRAVI ◽  
F. FALAHATI

Using the factorization approach and considering the contributions of the current–current, QCD penguin and electroweak penguin operators at the leading approximation, the decay amplitudes and decay widths of [Formula: see text] and [Formula: see text] transitions, where q = u, d, s and P and V are pseudoscalar and vector mesons, are calculated in terms of the transition form factors of the Bq→Dq and [Formula: see text]. Having computed those form factors in three-point QCD sum rules, the branching fraction for these decays are also evaluated. A comparison of our results with the predictions of the perturbative QCD as well as the existing experimental data is presented.


2003 ◽  
Vol 18 (07) ◽  
pp. 1023-1050 ◽  
Author(s):  
YEGANA V. MAMEDOVA

The light pseudoscalar π0, η and η′ mesons electromagnetic transition γ* + γ* → M form factors FMγ*(Q2,ω) are calculated, applying the perturbative QCD factorization formula and the frozen coupling constant approximation. In the computations the O(αS) order expression for FMγ*(Q2,ω) and the mesons' infrared renormalon corrected distribution amplitudes are used. In the case of the η and η′ mesons, the SUf(3) ordinary octet-singlet mixing scheme is utilized. Comparisons are made with the results obtained, employing the mesons' ordinary distribution amplitudes and with γ + γ* → M transition form factors.


2011 ◽  
Vol 26 (19) ◽  
pp. 3185-3199 ◽  
Author(s):  
FANG SU ◽  
YA-DONG YANG

According to the heavy-quark flavor symmetry, the B→π, K transition form-factors could be related to the corresponding ones of D-meson decays near the zero recoil point. With the recent precisely measured exclusive semileptonic decays D →πℓν and D→K ℓν, we perform a phenomenological study of B →π, K transition form-factors based on this symmetry. Using BK, BZ and Series Expansion parametrizations of the form-factor slope, we extrapolate B →π, K transition form-factors from [Formula: see text] to q2 = 0. It is found that, although being consistent with each other within error bars, the central values of our results for B →π, K form-factors at q2 = 0, [Formula: see text], are smaller than predictions of the QCD light-cone sum rules, but are in good agreements with the ones extracted from hadronic B-meson decays within the SCET framework. Moreover, smaller form-factors are also favored by the QCD factorization approach for hadronic B-meson decays.


2015 ◽  
Vol 30 (27) ◽  
pp. 1550162 ◽  
Author(s):  
Qin Chang ◽  
Pan-Pan Li ◽  
Xiao-Hui Hu ◽  
Lin Han

Motivated by the experiments of heavy flavor physics at running LHC and upgrading SuperKEKB/Belle-II in the future, the nonleptonic [Formula: see text] [Formula: see text] weak decays are studied in this paper. The amplitudes are calculated with factorization approach, and the transition form factors [Formula: see text] are evaluated within BSW model. With the reasonable approximation [Formula: see text], our predictions of branching fractions are presented. Numerically, the CKM-favored tree-dominated [Formula: see text] and [Formula: see text] decays have the largest branching fractions of the order [Formula: see text], and hence will be firstly observed by forthcoming Belle-II experiment. However, most of the other decay modes have the branching fractions [Formula: see text] and thus are hardly to be observed soon. Besides, for the possible detectable [Formula: see text] decays with branching fractions [Formula: see text], some useful ratios, such as [Formula: see text], etc. are presented and discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document