scholarly journals Impact of gravitational radiation higher order modes on single aligned-spin gravitational wave searches for binary black holes

2016 ◽  
Vol 93 (8) ◽  
Author(s):  
Juan Calderón Bustillo ◽  
Sascha Husa ◽  
Alicia M. Sintes ◽  
Michael Pürrer
2020 ◽  
Vol 101 (2) ◽  
Author(s):  
Sebastian Khan ◽  
Frank Ohme ◽  
Katerina Chatziioannou ◽  
Mark Hannam

2020 ◽  
Vol 101 (10) ◽  
Author(s):  
Antoni Ramos-Buades ◽  
Patricia Schmidt ◽  
Geraint Pratten ◽  
Sascha Husa

Author(s):  
Manuel Arca Sedda ◽  
Christopher P. L. Berry ◽  
Karan Jani ◽  
Pau Amaro-Seoane ◽  
Pierre Auclair ◽  
...  

AbstractSince 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the $\sim 10$ ∼ 10 –103 Hz band of ground-based observatories and the $\sim 10^{-4}$ ∼ 1 0 − 4 –10− 1 Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass ($\sim 10^{2}$ ∼ 1 0 2 –104M⊙) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology.


2014 ◽  
Vol 89 (2) ◽  
Author(s):  
Stephen Privitera ◽  
Satyanarayan R. P. Mohapatra ◽  
Parameswaran Ajith ◽  
Kipp Cannon ◽  
Nickolas Fotopoulos ◽  
...  

2016 ◽  
Vol 116 (13) ◽  
Author(s):  
B. P. Abbott ◽  
R. Abbott ◽  
T. D. Abbott ◽  
M. R. Abernathy ◽  
F. Acernese ◽  
...  

2016 ◽  
Vol 12 (S324) ◽  
pp. 273-278
Author(s):  
Robert Lasenby

AbstractBosonic fields around a spinning black hole can be amplified via ‘superradiance’, a wave analogue of the Penrose process, which extracts energy and momentum from the black hole. For hypothetical ultra-light bosons, with Compton wavelengths on ≳ km scales, such a process can lead to the exponential growth of gravitationally bound states around astrophysical Kerr black holes. If such particles exist, as predicted in many theories of beyond Standard Model physics, then these bosonic clouds give rise to a number of potentially-observable signals. Among the most promising are monochromatic gravitational radiation signals which could be detected at Advanced LIGO and future gravitational wave observatories.


2019 ◽  
Vol 34 (16) ◽  
pp. 1950124
Author(s):  
Paul H. Frampton

We study the merger rate of dark matter PIMBHs (Primordial Intermediate Mass Black Holes). We conclude that the black holes observed by LIGO in GW150914 and later events were probably not dark matter PIMBHs but rather the result of gravitational collapse of very massive stars. To study the PIMBHs by gravitational radiation will require a detector sensitive to frequencies below 10 Hz and otherwise more sensitive than LIGO. The LISA detector, expected to come online in 2034, will be useful at frequencies below 1 Hz but further gravitational wave detectors beyond LISA, sensitive up to 10 Hz, and higher strain sensitivity will be necessary to fully study dark matter.


2002 ◽  
Vol 65 (12) ◽  
Author(s):  
J. Baker ◽  
M. Campanelli ◽  
C. O. Lousto ◽  
R. Takahashi

Sign in / Sign up

Export Citation Format

Share Document