scholarly journals Dynamical systems perspective of cosmological finite-time singularities in f(R) gravity and interacting multifluid cosmology

2018 ◽  
Vol 98 (2) ◽  
Author(s):  
S. D. Odintsov ◽  
V. K. Oikonomou
2010 ◽  
Vol 6 (S271) ◽  
pp. 355-360
Author(s):  
Wayne Arter

AbstractRecent work has shown a relationship between between the equations of Reduced Magnetohydrodynamics (RMHD), used to model magnetic fusion laboratory experiments, and incompressible magnetoconvection (IMC), employed in the simulation of astrophysical fluid dynamics (AFD), which means that the two systems are mathematically equivalent in certain geometries. Limitations on the modelling of RMHD, which were found over twenty years ago, are reviewed for an AFD audience, together with hitherto unpublished material on the role of finite-time singularities in the discrete equations used to model fluid dynamical systems. Possible implications for turbulence modelling are mentioned.


1997 ◽  
Vol 15 (4) ◽  
pp. 529-545
Author(s):  
David Burrows

Perception ◽  
2017 ◽  
Vol 47 (1) ◽  
pp. 44-66 ◽  
Author(s):  
S. Kim ◽  
T. D. Frank

We report from two variants of a figure-ground experiment that is known in the literature to involve a bistable perceptual domain. The first variant was conducted as a two-alternative forced-choice experiment and in doing so tested participants on a categorical measurement scale. The second variant involved a Likert scale measure that was considered to represent a continuous measurement scale. The two variants were conducted as a single within-subjects experiment. Measures of bistability operationalized in terms of hysteresis size scores showed significant positive correlations across the two response conditions. The experimental findings are consistent with a dualistic interpretation of self-organizing perceptual systems when they are described on a macrolevel by means of so-called amplitude equations. This is explicitly demonstrated for a Lotka–Volterra–Haken amplitude equation model of task-related brain activity. As a by-product, the proposed dynamical systems perspective also sheds new light on the anchoring problem of producing numerical, continuous judgments.


Nonlinearity ◽  
2017 ◽  
Vol 30 (7) ◽  
pp. 2835-2853 ◽  
Author(s):  
Anna Maria Cherubini ◽  
Jeroen S W Lamb ◽  
Martin Rasmussen ◽  
Yuzuru Sato

2017 ◽  
Vol 22 (11) ◽  
pp. 0-0
Author(s):  
Tianhu Yu ◽  
◽  
Jinde Cao ◽  
Chuangxia Huang ◽  
◽  
...  

Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, with an emphasis on vector Lyapunov function methods and vector dissipativity theory. It examines large-scale continuous-time interconnected dynamical systems and describes thermodynamic modeling of large-scale interconnected systems, along with the use of vector Lyapunov functions to control large-scale dynamical systems. It also discusses finite-time stabilization of large-scale systems via control vector Lyapunov functions, coordination control for multiagent interconnected systems, large-scale impulsive dynamical systems, finite-time stabilization of large-scale impulsive dynamical systems, and hybrid decentralized maximum entropy control for large-scale systems. This chapter provides a brief introduction to large-scale interconnected dynamical systems as well as an overview of the book's structure.


Sign in / Sign up

Export Citation Format

Share Document