scholarly journals Throttling process of the Kerr–Newman–anti-de Sitter black holes in the extended phase space

2018 ◽  
Vol 98 (12) ◽  
Author(s):  
Ze-Wei Zhao ◽  
Yi-Hong Xiu ◽  
Nan Li
2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Peng Wang ◽  
Houwen Wu ◽  
Haitang Yang ◽  
Feiyu Yao

Abstract In this paper, we extend the phase space of black holes enclosed by a spherical cavity of radius rB to include $$ V=4\pi {r}_B^3/3 $$ V = 4 π r B 3 / 3 as a thermodynamic volume. The thermodynamic behavior of Schwarzschild and Reissner-Nordstrom (RN) black holes is then investigated in the extended phase space. In a canonical ensemble at constant pressure, we find that the aforementioned thermodynamic behavior is remarkably similar to that of the anti-de Sitter (AdS) counterparts with the cosmological constant being interpreted as a pressure. Specifically, a first-order Hawking-Page-like phase transition occurs for a Schwarzschild black hole in a cavity. The phase structure of a RN black hole in a cavity shows a strong resemblance to that of the van der Waals fluid. We also display that the Smarr relation has the same expression in both AdS and cavity cases. Our results may provide a new perspective for the extended thermodynamics of AdS black holes by analogy with black holes in a cavity.


2019 ◽  
Vol 34 (22) ◽  
pp. 1950170 ◽  
Author(s):  
Amritendu Haldar ◽  
Ritabrata Biswas

The study of thermodynamics in the view of the Hamiltonian approach is the newest tool to analyze the thermodynamic properties of the black holes (BHs). In this paper, we investigate the thermodynamics of d-dimensional [Formula: see text] asymptotically Anti-de Sitter (AdS) BHs. A thermodynamic representation based on symplectic geometry is introduced in this paper. We extend the thermodynamics of d-dimensional charged AdS BHs in the views of a Hamiltonian approach. Firstly, we study the thermodynamics in reduced phase space and correlate with the Schwarzschild solution. Then we enhance it in the extended phase space. In an extended phase space, the thermodynamic equations of state are stated as constraints. We apply the canonical transformation to analyze the thermodynamics of the said type of BHs. We plot [Formula: see text]-[Formula: see text] diagrams for different dimensions d taking the temperatures [Formula: see text], [Formula: see text] and [Formula: see text] and analyze the natures of the graphs and the dependences on d. In these diagrams, we point out the regions of coexistence. We also examine the phase transition by applying “Maxwell’s equal area law” of the said BHs. Here, we find the regions of coexistence of two phases which are also depicted graphically. Finally, we derive the “Clapeyron equation” and investigate the latent heat of isothermal phase transition.


2021 ◽  
pp. 2150108
Author(s):  
Sen Guo ◽  
Ya Ling Huang ◽  
Ke Jiang He ◽  
Guo Ping Li

In this paper, we attempt to further study the heat engine efficiency for the regular black hole (BH) with an anti-de Sitter (AdS) background where the working material is the Hayward–AdS (HAdS) BH. In the extended phase space, we investigate the heat engine efficiency of the HAdS BH by defining the cosmological constant as the thermodynamic pressure P and deriving the mechanical work from the PdV terms. Then, we obtain the relation between the efficiency and the entropy/pressure and plot these function figures. Meanwhile, we compare the relation between the HAdS BH with that of the Bardeen–AdS (BAdS) BH, where it is found that the efficiency of the HAdS BH increases with increase in the magnetic charge q in contrast to that of the BAdS BH decrease with increase in the magnetic charge q. We found that the HAdS BH is more efficient than the BAdS BH, and guess that it is related to the BH structure.


2018 ◽  
Vol 33 (35) ◽  
pp. 1850210 ◽  
Author(s):  
C. L. Ahmed Rizwan ◽  
A. Naveena Kumara ◽  
Deepak Vaid ◽  
K. M. Ajith

In this paper, we investigate the Joule–Thomson effects of AdS black holes with a global monopole. We study the effect of the global monopole parameter [Formula: see text] on the inversion temperature and isenthalpic curves. The obtained result is compared with Joule–Thomson expansion of van der Waals fluid, and the similarities were noted. Phase transition occuring in the extended phase space of this black hole is analogous to that in van der Waals gas. Our study shows that global monopole parameter [Formula: see text] plays a very important role in Joule–Thomson expansion.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
De-Cheng Zou ◽  
Ming Zhang ◽  
Ruihong Yue

We discuss the P−V criticality and phase transition in the extended phase space of anti-de Sitter(AdS) black holes in four-dimensional Rastall theory and recover the Van der Waals (VdW) analogy of small/large black hole (SBH/LBH) phase transition when the parameters ωs and ψ satisfy some certain conditions. Later, we further explore the quasinormal modes (QNMs) of massless scalar perturbations to probe the SBH/LBH phase transition. It is found that it can be detected near the critical point, where the slopes of the QNM frequencies change drastically in small and large black holes.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Jie-Xiong Mo ◽  
Wen-Biao Liu

The effects of conformal anomaly on the thermodynamics of black holes are investigated in this paper from the perspective ofP-Vcriticality of AdS black holes. Treating the cosmological constant as thermodynamic pressure, we extend the recent research to the extended phase space. Firstly, we study theP-Vcriticality of the uncharged AdS black holes with conformal anomaly and find that conformal anomaly does not influence whether there exists Van der Waals like critical behavior. Secondly, we investigate theP-Vcriticality of the charged cases and find that conformal anomaly influences not only the critical physical quantities but also the ratioPcrc/Tc. The ratio is no longer a constant as before but a function of conformal anomaly parameterα~. We also show that the conformal parameter should satisfy a certain range to guarantee the existence of critical point that has physical meaning. Our results show the effects of conformal anomaly.


2016 ◽  
Vol 25 (01) ◽  
pp. 1650010 ◽  
Author(s):  
S. H. Hendi ◽  
S. Panahiyan ◽  
B. Eslam Panah

In this paper, we take into account the black-hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. At first, we consider the cosmological constant as a dynamical pressure to study the phase transitions and analogy of the black holes with the Van der Waals liquid–gas system in the extended phase space. We make a comparison between linear and nonlinear electrodynamics and show that the lowest critical temperature belongs to Maxwell theory. Also, we make some arguments regarding how power of nonlinearity brings the system to Schwarzschild-like and Reissner–Nordström-like limitations. Next, we study the critical behavior of the system in the context of heat capacity. We show that critical behavior of system is similar to the one in phase diagrams of extended phase space. We also extend the study of phase transition points through geometrical thermodynamics (GTs). We introduce two new thermodynamical metrics for extended phase space and show that divergencies of thermodynamical Ricci scalar (TRS) of the new metrics coincide with phase transition points of the system. Then, we introduce a new method for obtaining critical pressure and horizon radius by considering denominator of the heat capacity.


Sign in / Sign up

Export Citation Format

Share Document