scholarly journals Diffusion enhancement in a levitated droplet via oscillatory deformation

2020 ◽  
Vol 102 (3) ◽  
Author(s):  
Yuki Koyano ◽  
Hiroyuki Kitahata ◽  
Koji Hasegawa ◽  
Satoshi Matsumoto ◽  
Katsuhiro Nishinari ◽  
...  
2019 ◽  
Vol 361 ◽  
pp. 588-598 ◽  
Author(s):  
Jia Ding ◽  
Yingshuai Jia ◽  
Pengjing Chen ◽  
Guofeng Zhao ◽  
Ye Liu ◽  
...  

1995 ◽  
Vol 400 ◽  
Author(s):  
S. Bellini ◽  
G. Mazzone ◽  
A. Montone ◽  
M. Vittori-antisari Enea ◽  
C.R. Casaccia

AbstractThe diffusion properties of a Ni-Zr metallic glass formed at the interface of a bulk diffusion couple have been studied in conditions far from a fully relaxed state. The growth kinetics of the interface film have been enhanced by both plastic deformation and high energy electron irradiation. Different results have been obtained in the two cases, since in the first case the film grows exponentially with time, while in the second case the usual square root dependence on time is observed. This behaviour has been interpreted as a consequence of the annihilation kinetics of the excess free volume introduced in the glass by the above methods. Two different mechanisms of free volume annihilation , namely exchange with a crystal vacancy at the glass-crystal interface and structural relaxation in the bulk glassy phase have been considered to be operative so that the nature of the growth kinetics has been found to depend on the mechanism predominant in each experimental condition.


1996 ◽  
Vol 438 ◽  
Author(s):  
V. Krishnamoorthy ◽  
D. Venables ◽  
K. Moeller ◽  
K. S. Jones ◽  
B. Freer

Abstract(001) CZ silicon wafers were implanted with arsenic (As+) at energies of 10–50keV to doses of 2×1014 to 5×1015/cm2. All implants were amorphizing in nature. The samples were annealed at 700°C for 16hrs. The resultant defect microstructures were analyzed by XTEM and PTEM and the As profiles were analyzed by SIMS. The As profiles showed significantly enhanced diffusion in all of the annealed specimens. The diffusion enhancement was both energy and dose dependent. The lowest dose implant/annealed samples did not show As clustering which translated to a lack of defects at the projected range. At higher doses, however, projected range defects were clearly observed, presumably due to interstitials generated during As clustering. The extent of enhancement in diffusion and its relation to the defect microstructure is explained by a combination of factors including surface recombination of point defects, As precipitation, As clustering and end of range damage.


2012 ◽  
Vol 6 (5) ◽  
pp. 1141-1155 ◽  
Author(s):  
B. R. Pinzer ◽  
M. Schneebeli ◽  
T. U. Kaempfer

Abstract. Dry snow metamorphism under an external temperature gradient is the most common type of recrystallization of snow on the ground. The changes in snow microstructure modify the physical properties of snow, and therefore an understanding of this process is essential for many disciplines, from modeling the effects of snow on climate to assessing avalanche risk. We directly imaged the microstructural changes in snow during temperature gradient metamorphism (TGM) under a constant gradient of 50 K m−1, using in situ time-lapse X-ray micro-tomography. This novel and non-destructive technique directly reveals the amount of ice that sublimates and is deposited during metamorphism, in addition to the exact locations of these phase changes. We calculated the average time that an ice volume stayed in place before it sublimated and found a characteristic residence time of 2–3 days. This means that most of the ice changes its phase from solid to vapor and back many times in a seasonal snowpack where similar temperature conditions can be found. Consistent with such a short timescale, we observed a mass turnover of up to 60% of the total ice mass per day. The concept of hand-to-hand transport for the water vapor flux describes the observed changes very well. However, we did not find evidence for a macroscopic vapor diffusion enhancement. The picture of {temperature gradient metamorphism} produced by directly observing the changing microstructure sheds light on the micro-physical processes and could help to improve models that predict the physical properties of snow.


Sign in / Sign up

Export Citation Format

Share Document