Complex Contagions on Configuration Model Graphs with a Power-Law Degree Distribution

Author(s):  
Grant Schoenebeck ◽  
Fang-Yi Yu
2021 ◽  
Author(s):  
Yanhua Tian

Power law degree distribution, the small world property, and bad spectral expansion are three of the most important properties of On-line Social Networks (OSNs). We sampled YouTube and Wikipedia to investigate OSNs. Our simulation and computational results support the conclusion that OSNs follow a power law degree distribution, have the small world property, and bad spectral expansion. We calculated the diameters and spectral gaps of OSNs samples, and compared these to graphs generated by the GEO-P model. Our simulation results support the Logarithmic Dimension Hypothesis, which conjectures that the dimension of OSNs is m = [log N]. We introduced six GEO-P type models. We ran simulations of these GEO-P-type models, and compared the simulated graphs with real OSN data. Our simulation results suggest that, except for the GEO-P (GnpDeg) model, all our models generate graphs with power law degree distributions, the small world property, and bad spectral expansion.


2006 ◽  
Vol 23 (3) ◽  
pp. 746-749 ◽  
Author(s):  
Liu Jian-Guo ◽  
Dang Yan-Zhong ◽  
Wang Zhong-Tuo

2007 ◽  
Vol 17 (07) ◽  
pp. 2447-2452 ◽  
Author(s):  
S. BOCCALETTI ◽  
D.-U. HWANG ◽  
V. LATORA

We introduce a fully nonhierarchical network growing mechanism, that furthermore does not impose explicit preferential attachment rules. The growing procedure produces a graph featuring power-law degree and clustering distributions, and manifesting slightly disassortative degree-degree correlations. The rigorous rate equations for the evolution of the degree distribution and for the conditional degree-degree probability are derived.


2017 ◽  
Vol 173 (3-4) ◽  
pp. 806-844 ◽  
Author(s):  
Pim van der Hoorn ◽  
Gabor Lippner ◽  
Dmitri Krioukov

Author(s):  
Changlun Zhang ◽  
Chao Li ◽  
Haibing Mu

In this paper, a new evolution model based on complex network among the cluster heads in wireless sensor network is proposed. The evolution model considered distributed and local-world mechanism during the evolving process. The theoretical analysis of this model exhibits a power-law degree distribution with mean-field theory, which provides good fault-tolerance. The degree exponent is not a fixed number, which changes with the distribution of the cluster heads and the energy as well as the communication radius. Furthermore, the degree exponent can lead to an upper limit -2 when the distribution of the cluster heads and the energy are both uniform distribution. Analysis and simulation show that the network exhibits well robustness and a power-law degree distribution.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
István Fazekas ◽  
Bettina Porvázsnyik

A random graph evolution mechanism is defined. The evolution studied is a combination of the preferential attachment model and the interaction of four vertices. The asymptotic behaviour of the graph is described. It is proved that the graph exhibits a power law degree distribution; in other words, it is scale-free. It turns out that any exponent in(2,∞)can be achieved. The proofs are based on martingale methods.


2018 ◽  
Vol 7 (3) ◽  
pp. 375-392 ◽  
Author(s):  
L A Bunimovich ◽  
D C Smith ◽  
B Z Webb

AbstractOne of the most important features observed in real networks is that, as a network’s topology evolves so does the network’s ability to perform various complex tasks. To explain this, it has also been observed that as a network grows certain subnetworks begin to specialize the function(s) they perform. Herein, we introduce a class of models of network growth based on this notion of specialization and show that as a network is specialized using this method its topology becomes increasingly sparse, modular and hierarchical, each of which are important properties observed in real networks. This procedure is also highly flexible in that a network can be specialized over any subset of its elements. This flexibility allows those studying specific networks the ability to search for mechanisms that describe their growth. For example, we find that by randomly selecting these elements a network’s topology acquires some of the most well-known properties of real networks including the small-world property, disassortativity and a right-skewed degree distribution. Beyond this, we show how this model can be used to generate networks with real-world like clustering coefficients and power-law degree distributions, respectively. As far as the authors know, this is the first such class of models that can create an increasingly modular and hierarchical network topology with these properties.


Sign in / Sign up

Export Citation Format

Share Document