Fixed points in a Hopfield model with random asymmetric interactions

1995 ◽  
Vol 52 (5) ◽  
pp. 5261-5272 ◽  
Author(s):  
Manoranjan P. Singh ◽  
Zhang Chengxiang ◽  
Chandan Dasgupta
2000 ◽  
Vol 12 (4) ◽  
pp. 865-880 ◽  
Author(s):  
Zhang Chengxiang ◽  
Chandan Dasgupta ◽  
Manoranjan P. Singh

The process of pattern retrieval in a Hopfield model in which a random antisymmetric component is added to the otherwise symmetric synaptic matrix is studied by computer simulations. The introduction of the antisymmetric component is found to increase the fraction of random inputs that converge to the memory states. However, the size of the basin of attraction of a memory state does not show any significant change when asymmetry is introduced in the synaptic matrix. We show that this is due to the fact that the spurious fixed points, which are destabilized by the introduction of asymmetry, have very small basins of attraction. The convergence time to spurious fixed-point attractors increases faster than that for the memory states as the asymmetry parameter is increased. The possibility of convergence to spurious fixed points is greatly reduced if a suitable upper limit is set for the convergence time. This prescription works better if the synaptic matrix has an antisymmetric component.


1999 ◽  
Vol 36 (03) ◽  
pp. 941-950 ◽  
Author(s):  
Anton Bovier

We prove a sharp upper bound on the number of patterns that can be stored in the Hopfield model if the stored patterns are required to be fixed points of the gradient dynamics. We also show corresponding bounds on the one-step convergence of the sequential gradient dynamics. The bounds coincide with the known lower bounds and confirm the heuristic expectations. The proof is based on a crucial idea of Loukianova (1997) using the negative association properties of some random variables arising in the analysis.


1999 ◽  
Vol 36 (3) ◽  
pp. 941-950 ◽  
Author(s):  
Anton Bovier

We prove a sharp upper bound on the number of patterns that can be stored in the Hopfield model if the stored patterns are required to be fixed points of the gradient dynamics. We also show corresponding bounds on the one-step convergence of the sequential gradient dynamics. The bounds coincide with the known lower bounds and confirm the heuristic expectations. The proof is based on a crucial idea of Loukianova (1997) using the negative association properties of some random variables arising in the analysis.


1996 ◽  
Vol 07 (01) ◽  
pp. 43-56 ◽  
Author(s):  
CRISÓGONO R. DA SILVA ◽  
FRANCISCO A. TAMARIT ◽  
EVALDO M. F. CURADO

We study both analytically and numerically the effects of including refractory periods in the Hopfield model for associative memory. These periods are introduced in the dynamics of the network as thresholds that depend on the state of the neuron at the previous time. Both the retrieval properties and the dynamical behavior are analyzed, and we found that, depending on the value of the thresholds and on the the ratio α between the number of stored memories (p) and the total number of neurons (N), the system presents not only fixed points but also chaotic or cyclic orbits. The recognizing capability of the network in the cyclic region is also studied.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1034
Author(s):  
Evaldo Mendonça Curado ◽  
Nilo Barrantes Melgar ◽  
Fernando Dantas Nobre

Based on the behavior of living beings, which react mostly to external stimuli, we introduce a neural-network model that uses external patterns as a fundamental tool for the process of recognition. In this proposal, external stimuli appear as an additional field, and basins of attraction, representing memories, arise in accordance with this new field. This is in contrast to the more-common attractor neural networks, where memories are attractors inside well-defined basins of attraction. We show that this procedure considerably increases the storage capabilities of the neural network; this property is illustrated by the standard Hopfield model, which reveals that the recognition capacity of our model may be enlarged, typically, by a factor 102. The primary challenge here consists in calibrating the influence of the external stimulus, in order to attenuate the noise generated by memories that are not correlated with the external pattern. The system is analyzed primarily through numerical simulations. However, since there is the possibility of performing analytical calculations for the Hopfield model, the agreement between these two approaches can be tested—matching results are indicated in some cases. We also show that the present proposal exhibits a crucial attribute of living beings, which concerns their ability to react promptly to changes in the external environment. Additionally, we illustrate that this new approach may significantly enlarge the recognition capacity of neural networks in various situations; with correlated and non-correlated memories, as well as diluted, symmetric, or asymmetric interactions (synapses). This demonstrates that it can be implemented easily on a wide diversity of models.


2018 ◽  
pp. 114-131
Author(s):  
O. Yu. Bondarenko

his article explores theoretical and experimental approach to modeling social interactions. Communication and exchange of information with other people affect individual’s behavior in numerous areas. Generally, such influence is exerted by leaders, outstanding individuals who have a higher social status or expert knowledge. Social interactions are analyzed in the models of social learning, game theoretic models, conformity models, etc. However, there is a lack of formal models of asymmetric interactions. Such models could help elicit certain qualities characterizing higher social status and perception of status by other individuals, find the presence of leader influence and analyze its mechanism.


2018 ◽  
Vol 2018 (-) ◽  
Author(s):  
Prondanai Kaskasem ◽  
Chakkrid Klin-eam ◽  
Suthep Suantai

Author(s):  
C. Ganesa Moorthy ◽  
S. Iruthaya Raj
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document