Improved simulation of drop dynamics in a shear flow at low Reynolds and capillary number

2006 ◽  
Vol 73 (5) ◽  
Author(s):  
I. Halliday ◽  
R. Law ◽  
C. M. Care ◽  
A. Hollis
2016 ◽  
Vol 791 ◽  
pp. 738-757 ◽  
Author(s):  
C. Dupont ◽  
F. Delahaye ◽  
D. Barthès-Biesel ◽  
A.-V. Salsac

The objective of the paper is to determine the stable mechanical equilibrium states of an oblate capsule subjected to a simple shear flow, by positioning its revolution axis initially off the shear plane. We consider an oblate capsule with a strain-hardening membrane and investigate the influence of the initial orientation, capsule aspect ratio$a/b$, viscosity ratio${\it\lambda}$between the internal and external fluids and the capillary number$Ca$which compares the viscous to the elastic forces. A numerical model coupling the finite element and boundary integral methods is used to solve the three-dimensional fluid–structure interaction problem. For any initial orientation, the capsule converges towards the same mechanical equilibrium state, which is only a function of the capillary number and viscosity ratio. For$a/b=0.5$, only four regimes are stable when${\it\lambda}=1$: tumbling and swinging in the low and medium$Ca$range ($Ca\lesssim 1$), regimes for which the capsule revolution axis is contained within the shear plane; then wobbling during which the capsule experiences precession around the vorticity axis; and finally rolling along the vorticity axis at high capillary numbers. When${\it\lambda}$is increased, the tumbling-to-swinging transition occurs for higher$Ca$; the wobbling regime takes place at lower$Ca$values and within a narrower$Ca$range. For${\it\lambda}\gtrsim 3$, the swinging regime completely disappears, which indicates that the stable equilibrium states are mainly the tumbling and rolling regimes at higher viscosity ratios. We finally show that the$Ca$–${\it\lambda}$phase diagram is qualitatively similar for higher aspect ratio. Only the$Ca$-range over which wobbling is stable increases with$a/b$, restricting the stability ranges of in- and out-of-plane motions, although this phenomenon is mainly visible for viscosity ratios larger than 1.


Author(s):  
Orest Shardt ◽  
J. J. Derksen ◽  
Sushanta K. Mitra

When droplets collide in a shear flow, they may coalesce or remain separate after the collision. At low Reynolds numbers, droplets coalesce when the capillary number does not exceed a critical value. We present three-dimensional simulations of droplet coalescence in a simple shear flow. We use a free-energy lattice Boltzmann method (LBM) and study the collision outcome as a function of the Reynolds and capillary numbers. We study the Reynolds number range from 0.2 to 1.4 and capillary numbers between 0.1 and 0.5. We determine the critical capillary number for the simulations (0.19) and find that it is does not depend on the Reynolds number. The simulations are compared with experiments on collisions between confined droplets in shear flow. The critical capillary number in the simulations is about a factor of 25 higher than the experimental value.


2005 ◽  
Vol 44 (17) ◽  
pp. 6999-7009 ◽  
Author(s):  
Beat H. Birkhofer ◽  
Jean-Claude Eischen ◽  
David Megias-Alguacil ◽  
Peter Fischer ◽  
Erich J. Windhab

2005 ◽  
Vol 17 (7) ◽  
pp. 078103 ◽  
Author(s):  
M. Cheng ◽  
S. H. N. Tan ◽  
K. C. Hung

2018 ◽  
Vol 30 (8) ◽  
pp. 083605 ◽  
Author(s):  
Jianzhi Yang ◽  
Minghou Liu ◽  
Changjian Wang ◽  
Xiaowei Zhu ◽  
Aifeng Zhang

Sign in / Sign up

Export Citation Format

Share Document