scholarly journals Nonlinear turbulent magnetic diffusion and effective drift velocity of a large-scale magnetic field in two-dimensional magnetohydrodynamic turbulence

2007 ◽  
Vol 75 (6) ◽  
Author(s):  
Nathan Kleeorin ◽  
Igor Rogachevskii
2013 ◽  
Vol 717 ◽  
pp. 347-360 ◽  
Author(s):  
S. M. Tobias ◽  
F. Cattaneo

AbstractWe argue that a method developed by Ångström (Ann. Phys. Chem., vol. 114, 1861, pp. 513–530) to measure the thermal conductivity of solids can be adapted to determine the effective diffusivity of a large-scale magnetic field in a turbulent electrically conducting fluid. The method consists of applying an oscillatory source and measuring the steady-state response. We illustrate this method in a two-dimensional system. This geometry is chosen because it is possible to compare the results with independent methods that are restricted to two-dimensional flows. We describe two variants of this method: one (the ‘turbulent Ångström method’) that is better suited to laboratory experiments and a second (the ‘method of oscillatory sines’) that is effective for numerical experiments. We show that, if correctly implemented, all methods agree. Based on these results we argue that these methods can be extended to three-dimensional numerical simulations and laboratory experiments.


2016 ◽  
Vol 823 (2) ◽  
pp. 111 ◽  
Author(s):  
Todor Kondić ◽  
David W. Hughes ◽  
Steven M. Tobias

2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Valery V. Pipin

We study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density patterns around the bipolar regions depend on the configuration of the ambient large-scale magnetic field, and in general they show a quadrupole distribution. The position of this pattern relative to the equator can depend on the tilt of the bipolar region. We compute the time–latitude diagrams of the helicity density evolution. The longitudinally averaged effect of the bipolar regions shows two bands of sign for the density distributions in each hemisphere. Similar helicity density patterns are provided by the helicity density flux from the emerging bipolar regions subjected to surface differential rotation.


1980 ◽  
Vol 91 ◽  
pp. 323-326
Author(s):  
D. J. Mullan ◽  
R. S. Steinolfson

The acceleration of solar cosmic rays in association with certain solar flares is known to be highly correlated with the propagation of an MHD shock through the solar corona (Svestka, 1976). The spatial structure of the sources of solar cosmic rays will be determined by those regions of the corona which are accessible to the flare-induced shock. The regions to which the flare shock is permitted to propagate are determined by the large scale magnetic field structure in the corona. McIntosh (1972, 1979) has demonstrated that quiescent filaments form a single continuous feature (a “baseball stitch”) around the surface of the sun. It is known that helmet streamers overlie quiescent filaments (Pneuman, 1975), and these helmet streamers contain large magnetic neutral sheets which are oriented essentially radially. Hence the magnetic field structure in the low solar corona is characterized by a large-scale radial neutral sheet which weaves around the entire sun following the “baseball stitch”. There is therefore a high probability that as a shock propagates away from a flare, it will eventually encounter this large neutral sheet.


2018 ◽  
Vol 27 (10) ◽  
pp. 1844006
Author(s):  
A. Dorodnitsyn ◽  
T. Kallman

Large scale magnetic field can be easily dragged from galactic scales toward AGN along with accreting gas. There, it can contribute to both the formation of AGN “torus” and help to remove angular momentum from the gas which fuels AGN accretion disk. However the dynamics of such gas is also strongly influenced by the radiative feedback from the inner accretion disk. Here we present results from the three-dimensional simulations of pc-scale accretion which is exposed to intense X-ray heating.


2018 ◽  
Vol 615 ◽  
pp. A58 ◽  
Author(s):  
Hsi-Wei Yen ◽  
Bo Zhao ◽  
Patrick M. Koch ◽  
Ruben Krasnopolsky ◽  
Zhi-Yun Li ◽  
...  

Aims. Ambipolar diffusion can cause a velocity drift between ions and neutrals. This is one of the non-ideal magnetohydrodynamics (MHD) effects proposed to enable the formation of large-scale Keplerian disks with sizes of tens of au. To observationally study ambipolar diffusion in collapsing protostellar envelopes, we compare here gas kinematics traced by ionized and neutral molecular lines and discuss the implication on ambipolar diffusion. Methods. We analyzed the data of the H13CO+ (3–2) and C18O (2–1) emission in the Class 0 protostar B335 obtained with our ALMA observations. We constructed kinematical models to fit the velocity structures observed in the H13CO+ and C18O emission and to measure the infalling velocities of the ionized and neutral gas on a 100 au scale in B335. Results. A central compact (~1′′–2′′) component that is elongated perpendicular to the outflow direction and exhibits a clear velocity gradient along the outflow direction is observed in both lines and most likely traces the infalling flattened envelope. With our kinematical models, the infalling velocities in the H13CO+ and C18O emission are both measured to be 0.85 ± 0.2 km s−1 at a radius of 100 au, suggesting that the velocity drift between the ionized and neutral gas is at most 0.3 km s−1 at a radius of 100 au in B335. Conclusions. The Hall parameter for H13CO+ is estimated to be ≫1 on a 100 au scale in B335, so that H13CO+ is expected to be attached to the magnetic field. Our non-detection or upper limit of the velocity drift between the ionized and neutral gas could suggest that the magnetic field remains rather well coupled to the bulk neutral material on a 100 au scale in this source, and that any significant field-matter decoupling, if present, likely occurs only on a smaller scale, leading to an accumulation of magnetic flux and thus efficient magnetic braking in the inner envelope. This result is consistent with the expectation from the MHD simulations with a typical ambipolar diffusivity and those without ambipolar diffusion. On the other hand, the high ambipolar drift velocity of 0.5–1.0 km s−1 on a 100 au scale predicted in the MHD simulations with an enhanced ambipolar diffusivity by removing small dust grains, where the minimum grain size is 0.1 μm, is not detected in our observations. However, because of our limited angular resolution, we cannot rule out a significant ambipolar drift only in the midplane of the infalling envelope. Future observations with higher angular resolutions (~0. ′′1) are needed to examine this possibility and ambipolar diffusion on a smaller scale.


2013 ◽  
Vol 9 (S302) ◽  
pp. 146-147
Author(s):  
Sudeshna Boro Saikia ◽  
Sandra V. Jeffers ◽  
Pascal Petit ◽  
Stephen Marsden ◽  
Julien Morin ◽  
...  

AbstractHD 206860 is a young planet (HN Peg b) hosting star of spectral type G0V and it has a potential debris disk around it. In this work we measure the longitudinal magnetic field of HD 206860 using spectropolarimetric data and we measure the chromospheric activity using Ca II H&K, H-alpha and Ca II infrared triplet lines.


2016 ◽  
Vol 12 (S328) ◽  
pp. 237-239
Author(s):  
A. A. Vidotto

AbstractSynoptic maps of the vector magnetic field have routinely been made available from stellar observations and recently have started to be obtained for the solar photospheric field. Although solar magnetic maps show a multitude of details, stellar maps are limited to imaging large-scale fields only. In spite of their lower resolution, magnetic field imaging of solar-type stars allow us to put the Sun in a much more general context. However, direct comparison between stellar and solar magnetic maps are hampered by their dramatic differences in resolution. Here, I present the results of a method to filter out the small-scale component of vector fields, in such a way that comparison between solar and stellar (large-scale) magnetic field vector maps can be directly made. This approach extends the technique widely used to decompose the radial component of the solar magnetic field to the azimuthal and meridional components as well, and is entirely consistent with the description adopted in several stellar studies. This method can also be used to confront synoptic maps synthesised in numerical simulations of dynamo and magnetic flux transport studies to those derived from stellar observations.


Sign in / Sign up

Export Citation Format

Share Document