scholarly journals Moments of action provide insight into critical times for advection-diffusion-reaction processes

2012 ◽  
Vol 86 (3) ◽  
Author(s):  
Adam J. Ellery ◽  
Matthew J. Simpson ◽  
Scott W. McCue ◽  
Ruth E. Baker
2012 ◽  
Vol 85 (4) ◽  
Author(s):  
Adam J. Ellery ◽  
Matthew J. Simpson ◽  
Scott W. McCue ◽  
Ruth E. Baker

Author(s):  
A.-T. Vuong ◽  
A. D. Rauch ◽  
W. A. Wall

We present a computational model for the interaction of surface- and volume-bound scalar transport and reaction processes with a deformable porous medium. The application in mind is pericellular proteolysis, i.e. the dissolution of the solid phase of the extracellular matrix (ECM) as a response to the activation of certain chemical species at the cell membrane and in the vicinity of the cell. A poroelastic medium model represents the extra cellular scaffold and the interstitial fluid flow, while a surface-bound transport model accounts for the diffusion and reaction of membrane-bound chemical species. By further modelling the volume-bound transport, we consider the advection, diffusion and reaction of sequestered chemical species within the extracellular scaffold. The chemo-mechanical coupling is established by introducing a continuum formulation for the interplay of reaction rates and the mechanical state of the ECM. It is based on known experimental insights and theoretical work on the thermodynamics of porous media and degradation kinetics of collagen fibres on the one hand and a damage-like effect of the fibre dissolution on the mechanical integrity of the ECM on the other hand. The resulting system of partial differential equations is solved via the finite-element method. To the best of our knowledge, it is the first computational model including contemporaneously the coupling between (i) advection–diffusion–reaction processes, (ii) interstitial flow and deformation of a porous medium, and (iii) the chemo-mechanical interaction impelled by the dissolution of the ECM. Our numerical examples show good agreement with experimental data. Furthermore, we outline the capability of the methodology to extend existing numerical approaches towards a more comprehensive model for cellular biochemo-mechanics.


2021 ◽  
Vol 82 (1-2) ◽  
Author(s):  
Christian Engwer ◽  
Michael Wenske

AbstractGlioblastoma Multiforme is a malignant brain tumor with poor prognosis. There have been numerous attempts to model the invasion of tumorous glioma cells via partial differential equations in the form of advection–diffusion–reaction equations. The patient-wise parametrization of these models, and their validation via experimental data has been found to be difficult, as time sequence measurements are mostly missing. Also the clinical interest lies in the actual (invisible) tumor extent for a particular MRI/DTI scan and not in a predictive estimate. Therefore we propose a stationalized approach to estimate the extent of glioblastoma (GBM) invasion at the time of a given MRI/DTI scan. The underlying dynamics can be derived from an instationary GBM model, falling into the wide class of advection-diffusion-reaction equations. The stationalization is introduced via an analytic solution of the Fisher-KPP equation, the simplest model in the considered model class. We investigate the applicability in 1D and 2D, in the presence of inhomogeneous diffusion coefficients and on a real 3D DTI-dataset.


Sign in / Sign up

Export Citation Format

Share Document