scholarly journals Work fluctuations for a Brownian particle in a harmonic trap with fluctuating locations

2013 ◽  
Vol 87 (2) ◽  
Author(s):  
Arnab Pal ◽  
Sanjib Sabhapandit
2020 ◽  
Vol 101 (2) ◽  
Author(s):  
Kanaya Malakar ◽  
Arghya Das ◽  
Anupam Kundu ◽  
K. Vijay Kumar ◽  
Abhishek Dhar

Atoms ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Koushik Mukherjee ◽  
Soumik Bandyopadhyay ◽  
Dilip Angom ◽  
Andrew M. Martin ◽  
Sonjoy Majumder

We present numerical simulations to unravel the dynamics associated with the creation of a vortex in a Bose–Einstein condensate (BEC), from another nonrotating BEC using two-photon Raman transition with Gaussian (G) and Laguerre–Gaussian (LG) laser pulses. In particular, we consider BEC of Rb atoms at their hyperfine ground states confined in a quasi two dimensional harmonic trap. Optical dipole potentials created by G and LG laser pulses modify the harmonic trap in such a way that density patterns of the condensates during the Raman transition process depend on the sign of the generated vortex. We investigate the role played by the Raman coupling parameter manifested through dimensionless peak Rabi frequency and intercomponent interaction on the dynamics during the population transfer process and on the final population of the rotating condensate. During the Raman transition process, the two BECs tend to have larger overlap with each other for stronger intercomponent interaction strength.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John A. C. Albay ◽  
Zhi-Yi Zhou ◽  
Cheng-Hung Chang ◽  
Yonggun Jun

AbstractAlthough the equivalence of heat and work has been unveiled since Joule’s ingenious experiment in 1845, they rarely originate from the same source in experiments. In this study, we theoretically and experimentally demonstrated how to use a high-precision optical feedback trap to combine the generation of virtual temperature and potential to simultaneously manipulate the heat and work of a small system. This idea was applied to a microscopic Stirling engine consisting of a Brownian particle under a time-varying confining potential and temperature. The experimental results justified the position and the velocity equipartition theorem, confirmed several theoretically predicted energetics, and revealed the engine efficiency as well as its trade-off relation with the output power. The small theory–experiment discrepancy and high flexibility of the swift change of the particle condition highlight the advantage of this optical technique and prove it to be an efficient way for exploring heat and work-related issues in the modern thermodynamics for small systems.


2020 ◽  
Vol 32 (9) ◽  
pp. 092010
Author(s):  
Qingqing Yin ◽  
Yunyun Li ◽  
Fabio Marchesoni ◽  
Tanwi Debnath ◽  
Pulak K. Ghosh

Sign in / Sign up

Export Citation Format

Share Document