scholarly journals Active Brownian particle in harmonic trap: exact computation of moments, and re-entrant transition

2021 ◽  
Vol 2021 (1) ◽  
pp. 013207
Author(s):  
Debasish Chaudhuri ◽  
Abhishek Dhar
Soft Matter ◽  
2020 ◽  
Vol 16 (20) ◽  
pp. 4776-4787 ◽  
Author(s):  
Amir Shee ◽  
Abhishek Dhar ◽  
Debasish Chaudhuri

A polymer-mapping of active Brownian particle (ABP)-trajectories, and exact calculation of the moments of dynamical variables provide insights into the mechanical crossovers in polymers with length, and related dynamical crossovers in ABP-motion.


2020 ◽  
Vol 101 (2) ◽  
Author(s):  
Kanaya Malakar ◽  
Arghya Das ◽  
Anupam Kundu ◽  
K. Vijay Kumar ◽  
Abhishek Dhar

2013 ◽  
Vol 392 (19) ◽  
pp. 4210-4215 ◽  
Author(s):  
Wei Guo ◽  
Can-Jun Wang ◽  
Lu-Chun Du ◽  
Dong-Cheng Mei

2020 ◽  
Vol 125 (17) ◽  
Author(s):  
Claudio B. Caporusso ◽  
Pasquale Digregorio ◽  
Demian Levis ◽  
Leticia F. Cugliandolo ◽  
Giuseppe Gonnella

Soft Matter ◽  
2018 ◽  
Vol 14 (18) ◽  
pp. 3581-3589 ◽  
Author(s):  
Eric W. Burkholder ◽  
John F. Brady

We generalize the active Brownian particle model to account for hydrodynamic interactions.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Christina Kurzthaler ◽  
Sebastian Leitmann ◽  
Thomas Franosch

Abstract Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.


Sign in / Sign up

Export Citation Format

Share Document