active brownian particle
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 19)

H-INDEX

9
(FIVE YEARS 4)

2022 ◽  
Vol 2022 (1) ◽  
pp. 013201
Author(s):  
Amir Shee ◽  
Debasish Chaudhuri

Abstract We consider the motion of an active Brownian particle with speed fluctuations in d-dimensions in the presence of both translational and orientational diffusion. We use an Ornstein–Uhlenbeck process for active speed generation. Using a Laplace transform approach, we describe and use a Fokker–Planck equation-based method to evaluate the exact time dependence of all relevant dynamical moments. We present explicit calculations of several such moments and compare our analytical predictions against numerical simulations to demonstrate and analyze the dynamical crossovers, determined by the orientational persistence of activity, speed fluctuation and relaxation. The kurtosis of displacement shows positive and negative deviations from a Gaussian behavior at intermediate times depending on the dominance of speed and orientational fluctuations, respectively.


Author(s):  
Alessio Squarcini ◽  
Alexandre Solon ◽  
Gleb Oshanin

Abstract We study analytically the single-trajectory spectral density (STSD) of an active Brownian motion as exhibited, for example, by the dynamics of a chemically-active Janus colloid. We evaluate the standardly-defined spectral density, {\it i.e.} the STSD averaged over a statistical ensemble of trajectories in the limit of an infinitely long observation time $T$, and also go beyond the standard analysis by considering the coefficient of variation $\gamma$ of the distribution of the STSD. Moreover, we analyse the finite-$T$ behaviour of the STSD and $\gamma$, determine the cross-correlations between spatial components of the STSD, and address the effects of translational diffusion on the functional forms of spectral densities. The exact expressions that we obtain unveil many distinctive features of active Brownian motion compared to its passive counterpart, which allow to distinguish between these two classes based solely on the spectral content of individual trajectories.


2021 ◽  
Vol 18 (177) ◽  
Author(s):  
Harvey L. Devereux ◽  
Colin R. Twomey ◽  
Matthew S. Turner ◽  
Shashi Thutupalli

We study the collective dynamics of groups of whirligig beetles Dineutus discolor (Coleoptera: Gyrinidae) swimming freely on the surface of water. We extract individual trajectories for each beetle, including positions and orientations, and use this to discover (i) a density-dependent speed scaling like v ∼ ρ − ν with ν ≈ 0.4 over two orders of magnitude in density (ii) an inertial delay for velocity alignment of approximately 13 ms and (iii) coexisting high and low-density phases, consistent with motility-induced phase separation (MIPS). We modify a standard active Brownian particle (ABP) model to a corralled ABP (CABP) model that functions in open space by incorporating a density-dependent reorientation of the beetles, towards the cluster. We use our new model to test our hypothesis that an motility-induced phase separation (MIPS) (or a MIPS like effect) can explain the co-occurrence of high- and low-density phases we see in our data. The fitted model then successfully recovers a MIPS-like condensed phase for N = 200 and the absence of such a phase for smaller group sizes N = 50, 100.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Debarati Sarkar ◽  
Gerhard Gompper ◽  
Jens Elgeti

AbstractThe motion of cells in tissues is an ubiquitous phenomenon. In particular, in monolayered cell colonies in vitro, pronounced collective behavior with swirl-like motion has been observed deep within a cell colony, while at the same time, the colony remains cohesive, with not a single cell escaping at the edge. Thus, the colony displays liquid-like properties inside, in coexistence with a cell-free “vacuum” outside. We propose an active Brownian particle model with attraction, in which the interaction potential has a broad minimum to give particles enough wiggling space to be collectively in the fluid state. We demonstrate that for moderate propulsion, this model can generate the fluid-vacuum coexistence described above. In addition, the combination of the fluid nature of the colony with cohesion leads to preferred orientation of the cell polarity, pointing outward, at the edge, which in turn gives rise to a tensile stress in the colony—as observed experimentally for epithelial sheets. For stronger propulsion, collective detachment of cell clusters is predicted. Further addition of an alignment preference of cell polarity and velocity direction results in enhanced coordinated, swirl-like motion, increased tensile stress and cell-cluster detachment.


Author(s):  
E. A. Lisin ◽  
O. S. Vaulina ◽  
I. I. Lisina ◽  
O. F. Petrov

Simple corrections are proposed to the basic theory of overdamped active Brownian motion, which allow one to calculate the effective diffusion coefficient and the persistence length of a self-propelled particle in a medium with any dynamic viscosity.


2020 ◽  
Vol 125 (17) ◽  
Author(s):  
Claudio B. Caporusso ◽  
Pasquale Digregorio ◽  
Demian Levis ◽  
Leticia F. Cugliandolo ◽  
Giuseppe Gonnella

Sign in / Sign up

Export Citation Format

Share Document