Transition of the scaling law in inverse energy cascade range caused by a nonlocal excitation of coherent structures observed in two-dimensional turbulent fields

2013 ◽  
Vol 88 (5) ◽  
Author(s):  
Atsushi Mizuta ◽  
Takeshi Matsumoto ◽  
Sadayoshi Toh
2011 ◽  
Vol 667 ◽  
pp. 463-473 ◽  
Author(s):  
ANDREAS VALLGREN

High-resolution simulations of forced two-dimensional turbulence reveal that the inverse cascade range is sensitive to an infrared Reynolds number, Reα = kf/kα, where kf is the forcing wavenumber and kα is a frictional wavenumber based on linear friction. In the limit of high Reα, the classic k−5/3 scaling is lost and we obtain steeper energy spectra. The sensitivity is traced to the formation of vortices in the inverse energy cascade range. Thus, it is hypothesized that the dual limit Reα → ∞ and Reν = kd/kf → ∞, where kd is the small-scale dissipation wavenumber, will lead to a steeper energy spectrum than k−5/3 in the inverse energy cascade range. It is also found that the inverse energy cascade is maintained by non-local triad interactions.


2013 ◽  
Vol 110 (10) ◽  
Author(s):  
Matthew T. Reeves ◽  
Thomas P. Billam ◽  
Brian P. Anderson ◽  
Ashton S. Bradley

2010 ◽  
Vol 656 ◽  
pp. 448-457 ◽  
Author(s):  
ANDREAS VALLGREN ◽  
ERIK LINDBORG

High-resolution simulations of forced quasi-geostrophic (QG) turbulence reveal that Charney isotropy develops under a wide range of conditions, and constitutes a preferred state also in β-plane and freely decaying turbulence. There is a clear analogy between two-dimensional and QG turbulence, with a direct enstrophy cascade that is governed by the prediction of Kraichnan (J. Fluid Mech., vol. 47, 1971, p. 525) and an inverse energy cascade following the classic k−5/3 scaling. Furthermore, we find that Charney's prediction of equipartition between the potential and kinetic energy in each of the two horizontal velocity components is approximately fulfilled in the inertial ranges.


2012 ◽  
Vol 19 ◽  
pp. 257-261
Author(s):  
HUA XIA ◽  
MICHAEL SHATS

Two-dimensional (2D) turbulence supports the inverse energy cascade and the spectral condensate generation, which are studied in laboratory experiments. The generation of the spectral condensation via the inverse energy cascade dramatically reduces the radial transport in 2D flows. In this paper we report experimental results related to the formation of spectral condensates. The dynamics of the structural formation is reposted.


Sign in / Sign up

Export Citation Format

Share Document