scholarly journals Scaling of velocity and scalar structure functions in ac electrokinetic turbulence

2017 ◽  
Vol 95 (2) ◽  
Author(s):  
Wei Zhao ◽  
Guiren Wang
2012 ◽  
Vol 713 ◽  
pp. 453-481 ◽  
Author(s):  
J. Lepore ◽  
L. Mydlarski

AbstractThe effect of scalar-field (temperature) boundary conditions on the inertial-convective-range scaling exponents of the high-order passive scalar structure functions is studied in the turbulent, heated wake downstream of a circular cylinder. The temperature field is generated two ways: using (i) a heating element embedded within the cylinder that generates the hydrodynamic wake (thus creating a heated cylinder) and (ii) a mandoline (an array of fine, heated wires) installed downstream of the cylinder. The hydrodynamic field is independent of the scalar-field boundary conditions/injection methods, and the same in both flows. Using the two heat injection mechanisms outlined above, the inertial-convective-range scaling exponents of the high-order passive scalar structure functions were measured. It is observed that the different scalar-field boundary conditions yield significantly different scaling exponents (with the magnitude of the difference increasing with structure function order). Moreover, the exponents obtained from the mandoline experiment are smaller than the analogous exponents from the heated cylinder experiment (both of which exhibit a significant departure from the Kolmogorov prediction). Since the observed deviation from the Kolmogorov $n/ 3$ prediction arises due to the effects of internal intermittency, the typical interpretation of this result would be that the scalar field downstream of the mandoline is more internally intermittent than that generated by the heated cylinder. However, additional measures of internal intermittency (namely the inertial-convective-range scaling exponents of the mixed, sixth-order, velocity–temperature structure functions and the non-centred autocorrelations of the dissipation rate of scalar variance) suggest that both scalar fields possess similar levels of internal intermittency – a distinctly different conclusion. Examination of the normalized high-order moments reveals that the smaller scaling exponents (of the high-order passive scalar structure functions) obtained for the mandoline experiment arise due to the smaller thermal integral length scale of the flow (i.e. the narrower inertial-convective subrange) and are not solely the result of a more intermittent scalar field. The difference in the passive scalar structure function scaling exponents can therefore be interpreted as an artifact of the different, finite Péclet numbers of the flows under consideration – an effect that is notably less prominent in the other measures of internal intermittency.


2004 ◽  
Vol 16 (11) ◽  
pp. 4012-4019 ◽  
Author(s):  
Armann Gylfason ◽  
Zellman Warhaft

2018 ◽  
Vol 851 ◽  
Author(s):  
Dominik Krug ◽  
Xiaojue Zhu ◽  
Daniel Chung ◽  
Ivan Marusic ◽  
Roberto Verzicco ◽  
...  

In turbulent Rayleigh–Bénard (RB) convection, a transition to the so-called ultimate regime, in which the boundary layers (BL) are of turbulent type, has been postulated. Indeed, at very large Rayleigh number $Ra\approx 10^{13}{-}10^{14}$ a transition in the scaling of the global Nusselt number $Nu$ (the dimensionless heat transfer) and the Reynolds number with $Ra$ has been observed in experiments and very recently in direct numerical simulations (DNS) of two-dimensional (2D) RB convection. In this paper, we analyse the local scaling properties of the lateral temperature structure functions in the BLs of this simulation of 2D RB convection, employing extended self-similarity (ESS) (i.e., plotting the structure functions against each other, rather than only against the scale) in the spirit of the attached-eddy hypothesis, as we have recently introduced for velocity structure functions in wall turbulence (Krug et al., J. Fluid Mech., vol. 830, 2017, pp. 797–819). We find no ESS scaling at $Ra$ below the transition and in the near-wall region. However, beyond the transition and for large enough wall distance $z^{+}>100$, we find clear ESS behaviour, as expected for a scalar in a turbulent boundary layer. In striking correspondence to the $Nu$ scaling, the ESS scaling region is negligible at $Ra=10^{11}$ and well developed at $Ra=10^{14}$, thus providing strong evidence that the observed transition in the global Nusselt number at $Ra\approx 10^{13}$ indeed is the transition from a laminar type BL to a turbulent type BL. Our results further show that the relative slopes for scalar structure functions in the ESS scaling regime are the same as for their velocity counterparts, extending their previously established universality. The findings are confirmed by comparing to scalar structure functions in three-dimensional turbulent channel flow.


2009 ◽  
Author(s):  
Tsuneo Uematsu ◽  
Yoshio Kitadono ◽  
Ken Sasaki ◽  
Takahiro Ueda

Author(s):  
А.С. Шадрина ◽  
И.В. Терешкина ◽  
Я.З. Плиева ◽  
Д.Н. Кушлинский ◽  
Д.О. Уткин ◽  
...  

Матриксные металлопротеиназы (ММП) - ферменты класса гидролаз, осуществляющие ферментативный катализ с помощью связанного в активном центре иона цинка. Функции ММП разнообразны, и нарушение баланса их активности может быть одним из этиологических факторов различных заболеваний. В данном обзоре рассмотрена классификация ММП человека, особенности их структуры и регуляции, а также роль в физиологических и патологических процессах в организме человека. Приведен перечень наиболее изученных на настоящий момент полиморфных вариантов генов MMП, описаны их функциональные эффекты и представлены результаты ассоциативных исследований. Matrix metalloproteinases (MMPs) are enzymes of the hydrolase class that carry out enzymatic catalysis with the help of a zinc ion bound in the active center. MMP functions are diverse, and a disturbance in the balance of their activity may be one of the etiological factors of various diseases. In this review, the classification of human MMP, the features of their structure and regulation, as well as the role in physiological and pathological processes in the human body are considered. A list of the most studied polymorphic versions of MMP genes has been given, their functional effects have been described, and the results of associative studies have been presented.


Sign in / Sign up

Export Citation Format

Share Document