scholarly journals Transition to ultimate Rayleigh–Bénard turbulence revealed through extended self-similarity scaling analysis of the temperature structure functions

2018 ◽  
Vol 851 ◽  
Author(s):  
Dominik Krug ◽  
Xiaojue Zhu ◽  
Daniel Chung ◽  
Ivan Marusic ◽  
Roberto Verzicco ◽  
...  

In turbulent Rayleigh–Bénard (RB) convection, a transition to the so-called ultimate regime, in which the boundary layers (BL) are of turbulent type, has been postulated. Indeed, at very large Rayleigh number $Ra\approx 10^{13}{-}10^{14}$ a transition in the scaling of the global Nusselt number $Nu$ (the dimensionless heat transfer) and the Reynolds number with $Ra$ has been observed in experiments and very recently in direct numerical simulations (DNS) of two-dimensional (2D) RB convection. In this paper, we analyse the local scaling properties of the lateral temperature structure functions in the BLs of this simulation of 2D RB convection, employing extended self-similarity (ESS) (i.e., plotting the structure functions against each other, rather than only against the scale) in the spirit of the attached-eddy hypothesis, as we have recently introduced for velocity structure functions in wall turbulence (Krug et al., J. Fluid Mech., vol. 830, 2017, pp. 797–819). We find no ESS scaling at $Ra$ below the transition and in the near-wall region. However, beyond the transition and for large enough wall distance $z^{+}>100$, we find clear ESS behaviour, as expected for a scalar in a turbulent boundary layer. In striking correspondence to the $Nu$ scaling, the ESS scaling region is negligible at $Ra=10^{11}$ and well developed at $Ra=10^{14}$, thus providing strong evidence that the observed transition in the global Nusselt number at $Ra\approx 10^{13}$ indeed is the transition from a laminar type BL to a turbulent type BL. Our results further show that the relative slopes for scalar structure functions in the ESS scaling regime are the same as for their velocity counterparts, extending their previously established universality. The findings are confirmed by comparing to scalar structure functions in three-dimensional turbulent channel flow.

1996 ◽  
Vol 3 (4) ◽  
pp. 247-261 ◽  
Author(s):  
V. Carbone ◽  
P. Veltri ◽  
R. Bruno

Abstract. In this paper we review some of the work done in investigating the scaling properties of Magnetohydrodynamic turbulence, by using velocity fluctuations measurements performed in the interplanetary space plasma by the Helios spacecraft. The set of scaling exponents ξq for the q-th order velocity structure functions, have been determined by using the Extended Self-Similarity hypothesis. We have found that the q-th order velocity structure function, when plotted vs. the 4-th order structure function, displays a range of self-similarity which extends over all the lengths covered by measurements, thus allowing for a very good determination of ξq. Moreover the results seem to show that the scaling exponents are the same regardless the various observation periods considered. The obtained scaling exponents have been compared with the results of some intermittency models for Kraichnan's turbulence, derived in the framework of infinitely divisible fragmentation processes, showing the good agreement between these models and our observations. Finally, on the basis of the actually available data sets, we show that scaling laws in Solar Wind turbulence seem to be different from turbulent scaling laws in the ordinary fluid flows. This is true for high-order velocity structure functions, while low-order velocity structure functions show the same scaling laws. Since our measurements involve length scales which extend over many order of magnitude where dissipation is practically absent, our results show that Solar Wind turbulence can be regarded as a testing bench for the investigation of general scaling behaviour in turbulent flows. In particular our results strongly support the point of view which attributes a key role to the inertial range dynamics in determining the intermittency characteristics in fluid flows, in contrast with the point of view which attributes intermittency to a finite Reynolds number effect.


2006 ◽  
Vol 129 (8) ◽  
pp. 1100-1105 ◽  
Author(s):  
C. Balaji ◽  
M. Hölling ◽  
H. Herwig

In this paper, we propose a general methodology by which a universal temperature profile, derived by matching temperature gradients in the overlap region of the wall layer and the core layer, that is valid for high Rayleigh number flows, can be recast into a correlation for the Nusselt number. We then evaluate its adequacy for three types of flows: (a) fully developed flows (e.g., the infinite channel), (b) developing flows (e.g., the vertical flat plate boundary layer), and (c) complex flows (e.g., Rayleigh-Bénard convection and the differentially heated square cavity). The correlation for the Nusselt number, in general, contains a logarithmic term, usually missing in earlier studies, with which we are able to match existing direct numerical simulations or experimental data very well for both fully developed and complex flows.


2014 ◽  
Vol 745 ◽  
pp. 1-24 ◽  
Author(s):  
Rajaram Lakkaraju ◽  
Federico Toschi ◽  
Detlef Lohse

AbstractIntermittency effects are numerically studied in turbulent bubbling Rayleigh–Bénard (RB) flow and compared to the standard RB case. The vapour bubbles are modelled with a Euler–Lagrangian scheme and are two-way coupled to the flow and temperature fields, both mechanically and thermally. To quantify the degree of intermittency we use probability density functions, structure functions, extended self-similarity (ESS) and generalized extended self-similarity (GESS) for both temperature and velocity differences. For the standard RB case we reproduce scaling very close to the Obukhov–Corrsin values common for a passive scalar and the corresponding relatively strong intermittency for the temperature fluctuations, which are known to originate from sharp temperature fronts. These sharp fronts are smoothed by the vapour bubbles owing to their heat capacity, leading to much less intermittency in the temperature but also in the velocity field in bubbling thermal convection.


1998 ◽  
Vol 12 (04) ◽  
pp. 405-431
Author(s):  
M. Hnatich ◽  
D. Horváth

The limits of a new form of scaling, named Extended Self Similarity (ESS) originally suggested [R. Benzi et al., Phys. Rev.E48 (1993), 29] for the inertial, dissipation and transition scales are discussed. A modification of the ESS concept is put forward using the model of decaying turbulence at high Reynolds numbers [L. Ts. Adzhemyan et al., Czech. J. Phys.45 (1995), 517]. In this model the statistical description is simplified by the hypotheses of homogeneity, isotropy, incompressibility and self-similarity, for the power law stage of decay the presence of a single scaling length — Karman scale — is assumed within the energy containing range. The second and third structure functions of the velocity field [S2(r) and S3(r)] have been calculated using the well-known connections between the mean energy spectrum and S2(r), and between mean spectral transfer and third structure function S3(r). Both structure functions have been investigated in the inertial and low enery containing ranges, then expressed in the form involving the leading Kolmogorov's K41 asymptotics [S2(r)∝ r2/3, S3(r)∝ r] and its asymptotical corrections. These corrections allow to determine corrections to the original ESS form [Formula: see text] (for K41) and to find out the modified variant of the ESS.


2003 ◽  
Vol 17 (04) ◽  
pp. 131-139 ◽  
Author(s):  
EMILY S. C. CHING ◽  
T. P. CHOY ◽  
K. W. CHUI

It has been conjectured13 that the extended self-similarity measured in turbulent flows is an indication of the maximum velocity difference being scale-independent and thus the most intense velocity structures being shock-like. In this paper, we present analyses of velocity measurements in turbulent Rayleigh–Bénard convection that show further support to this conjecture.


Sign in / Sign up

Export Citation Format

Share Document