scholarly journals Experimental study of wall boundary conditions for large-eddy simulation

2001 ◽  
Vol 446 ◽  
pp. 309-320 ◽  
Author(s):  
IVAN MARUSIC ◽  
GARY J. KUNKEL ◽  
FERNANDO PORTÉ-AGEL

An experimental investigation was conducted to study the wall boundary condition for large-eddy simulation (LES) of a turbulent boundary layer at Rθ = 3500. Most boundary condition formulations for LES require the specification of the instantaneous filtered wall shear stress field based upon the filtered velocity field at the closest grid point above the wall. Three conventional boundary conditions are tested using simultaneously obtained filtered wall shear stress and streamwise and wall-normal velocities, at locations nominally within the log region of the flow. This was done using arrays of hot-film sensors and X-wire probes. The results indicate that models based on streamwise velocity perform better than those using the wall-normal velocity, but overall significant discrepancies were found for all three models. A new model is proposed which gives better agreement with the shear stress measured at the wall. The new model is also based on the streamwise velocity but is formulated so as to be consistent with ‘outer-flow’ scaling similarity of the streamwise velocity spectra. It is therefore expected to be more generally applicable over a larger range of Reynolds numbers at any first-grid position within the log region of the boundary layer.

Author(s):  
L. D. Browne ◽  
P. Griffin ◽  
M. T. Walsh

Hemodialysis patients require a vascular access capable of accommodating the high blood flow rates required for effective dialysis treatment. The arteriovenous graft is one such access. However, this access type suffers from reduced one year primary & secondary patency rates of 59–90% and 50–82% respectively [1]. The main contributor to the failure of this access is stenosis via the development of intimal hyperplasia (IH) that predominately occurs at the venous anastomosis. It is hypothesized that the resulting transitional to turbulent flow regime within the venous anastomosis contributes to the development of IH. The aim of this study is to investigate the influence of this transitional to turbulent behavior on wall shear stress within the venous anastomosis via the use of large eddy simulation.


Author(s):  
Soshi Kawai

This paper addresses the error in large-eddy simulation with wall-modeling (i.e., when the wall shear stress is modeled and the viscous near-wall layer is not resolved): the error in estimating the wall shear stress from a given outer-layer velocity field using auxiliary near-wall RANS equations where convection is not neglected. By considering the behavior of turbulence length scales near a wall, the cause of the errors is diagnosed and solutions that remove the errors are proposed based solidly on physical reasoning. The resulting method is shown to accurately predict equilibrium boundary layers at very high Reynolds number, with both realistic instantaneous fields (without overly elongated unphysical near-wall structures) and accurate statistics (both skin friction and turbulence quantities).


2020 ◽  
Vol 8 (7) ◽  
pp. 524
Author(s):  
Tongsheng Wang ◽  
Tiezhi Sun ◽  
Cong Wang ◽  
Chang Xu ◽  
Yingjie Wei

Microbubble drag reduction has good application prospects. It operates by injecting a large number of bubbles with tiny diameters into a turbulent boundary layer. However, its mechanism is not yet fully understood. In this paper, the mechanisms of microbubble drag reduction in a fully developed turbulent boundary layer over a flat-plate is investigated using a two-way coupled Euler-Lagrange approach based on large eddy simulation. The results show good agreement with theoretical values in the velocity distribution and the distribution of fluctuation intensities. As the results show, the presence of bubbles reduces the frequency of bursts associated with the sweep events from 637.8 Hz to 611.2 Hz, indicating that the sweep events, namely the impacting of high-speed fluids on the wall surface, are suppressed and the streamwise velocity near the wall is decreased, hence reducing the velocity gradient at the wall and consequently lessening the skin friction. The suppression on burst frequency also, with the fluid fluctuation reduced in degree, decreases the intensity of vortices near the wall, leading to reduced production of turbulent kinetic energy.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Roland Gårdhagen ◽  
Jonas Lantz ◽  
Fredrik Carlsson ◽  
Matts Karlsson

Large eddy simulation was applied for flow of Re=2000 in a stenosed pipe in order to undertake a thorough investigation of the wall shear stress (WSS) in turbulent flow. A decomposition of the WSS into time averaged and fluctuating components is proposed. It was concluded that a scale resolving technique is required to completely describe the WSS pattern in a subject specific vessel model, since the poststenotic region was dominated by large axial and circumferential fluctuations. Three poststenotic regions of different WSS characteristics were identified. The recirculation zone was subject to a time averaged WSS in the retrograde direction and large fluctuations. After reattachment there was an antegrade shear and smaller fluctuations than in the recirculation zone. At the reattachment the fluctuations were the largest, but no direction dominated over time. Due to symmetry the circumferential time average was always zero. Thus, in a blood vessel, the axial fluctuations would affect endothelial cells in a stretched state, whereas the circumferential fluctuations would act in a relaxed direction.


Author(s):  
Özgül İlhan ◽  
Niyazi Şahin

Abstract Large eddy simulation (LES) seeks to predict the dynamics of the organized structures in the flow, that is, local spatial averages u ̄ $\bar{u}$ of the velocity u of the fluid. Although LES has been extensively used to model turbulent flows, very often, the model has difficulty predicting turbulence generated by interactions of a flow with a boundary. A critical problem in LES is to find appropriate boundary conditions for the flow averages, which depend on the behavior of the unknown flow near the wall. In the light of the works of Navier and Maxwell, we use boundary conditions on the wall. We compute the appropriate friction coefficient β for channel flows and investigate its asymptotic behavior as the averaging radius δ → 0 and as the Reynolds number Re → ∞. No-slip conditions are recovered in the first limit, and free-slip conditions are recovered in the second limit. This study is not intended to develop new theories of the turbulent boundary layer; we use available boundary layer theories to improve numerical boundary conditions for flow averages.


Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 112
Author(s):  
H. Jane Bae ◽  
Adrián Lozano-Durán

We studied the effect of wall boundary conditions on the statistics in a wall-modeled large-eddy simulation (WMLES) of turbulent channel flows. Three different forms of the boundary condition based on the mean stress-balance equations were used to supply the correct mean wall shear stress for a wide range of Reynolds numbers and grid resolutions applicable to WMLES. In addition to the widely used Neumann boundary condition at the wall, we considered a case with a no-slip condition at the wall in which the wall stress was imposed by adjusting the value of the eddy viscosity at the wall. The results showed that the type of boundary condition utilized had an impact on the statistics (e.g., mean velocity profile and turbulence intensities) in the vicinity of the wall, especially at the first off-wall grid point. Augmenting the eddy viscosity at the wall resulted in improved predictions of statistics in the near-wall region, which should allow the use of information from the first off-wall grid point for wall models without additional spatial or temporal filtering. This boundary condition is easy to implement and provides a simple solution to the well-known log-layer mismatch in WMLES.


Sign in / Sign up

Export Citation Format

Share Document